Please use this identifier to cite or link to this item: http://tailieuso.udn.vn/handle/TTHL_125/9689
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTruong, Thi Thu Ha-
dc.contributor.authorNgo, Ngoc Tri-
dc.contributor.authorTang, Thi Khanh Vy-
dc.date.accessioned2019-04-02T08:17:56Z-
dc.date.available2019-04-02T08:17:56Z-
dc.date.issued2018-
dc.date.submitted2018-
dc.identifier.issn1859-1531-
dc.identifier.urihttp://tailieuso.udn.vn/handle/TTHL_125/9689-
dc.descriptionThe University of Danang, Journal of Science and Technology, No.11(132).2018, Vol.2; PP. 108 – 112.en
dc.language.isoenen
dc.publisherThe University of Danangen
dc.sourceThe University of Danangen
dc.subjectLoad consumptionen
dc.subjectForecast accuracyen
dc.subjectMoving-window concepten
dc.subjectSwarm intelligenceen
dc.subjectSupport vector machinesen
dc.titleElectric load consumption forecasting in Da Nang city using a hybrid of moving-window concept and swarm intelligence-optimized machine learning regressionen
dc.title.alternativeDự báo sự tiêu thụ điện ở thành phố Đà Nẵng sử dụng mô hình kết hợp cửa sổ dịch chuyển và hồi quy máy học được tối ưu bởi trí tuệ bầy đànen
dc.typeArticleen
Appears in Collections:2018

Files in This Item:
File Description SizeFormat 
ElectricLoad.TT.pdfAbstracts77.31 kBAdobe PDFView/Open
ElectricLoad.TV.pdfContents408.21 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.