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Abstract

Anomaly detection is an area of video analysis that has great importance in automated
surveillance. Although it has been extensively studied, there has been little work on using
deep convolutional neural networks to learn spatio-temporal feature representations. In
this thesis we present novel approaches for learning motion features and modelling normal
spatio-temporal dynamics for anomaly detection.

The contributions are divided into two main chapters. The first introduces a method
that uses a convolutional autoencoder to learn motion features from foreground optical
flow patches. The autoencoder is coupled with a spatial sparsity constraint, known as
Winner-Take-All, to learn shift-invariant and generic flow-features. This method solves the
problem of using hand-crafted feature representations in state of the art methods. Moreover,
to capture variations in scale of the patterns of motion as an object moves in depth through
the scene, we also divide the image plane into regions and learn a separate normality model
in each region. We compare the methods with state of the art approaches on two datasets
and demonstrate improved performance.

The second main chapter presents a end-to-end method that learns normal spatio-
temporal dynamics from video volumes using a sequence-to-sequence encoder-decoder for
prediction and reconstruction. This work is based on the intuition that the encoder-decoder
learns to estimate normal sequences in a training set with low error, thus it estimates an
abnormal sequence with high error. Error between the network’s output and the target
output is used to classify a video volume as normal or abnormal. In addition to the use of
reconstruction error, we also use prediction error for anomaly detection.

We evaluate the second method on three datasets. The prediction models show com-
parable performance with state of the art methods. In comparison with the first proposed
method, performance is improved in one dataset. Moreover, running time is significantly

faster.
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The following is a list of important math notations used in the thesis. In general, the

following rules are used for numbers and arrays:
e Bold capital letters (e.g. W) denote matrices.

e Bold small letters (e.g. w) denote column vectors. A row vector is denoted by its

transpose, e.g, W' .

e Non-bold letters (e.g. z, [, C') are for scalars.

Latin
a - Negative slope in leaky ReL.U layer
b - Network bias
b; - Network bias of layer [
C; - The depth of output tensor of layer [
Cy - The depth of input tensor
d - Feature representation of a patch
E - Output tensor
e - Prediction/Reconstruction error
F: - A video frame at time ¢
P - Foreground patch
P,, - n-th foreground patch
P - Estimation of the foreground patch
H,; - The height of output tensor of layer [
Hy - The height of input tensor
N - Batch size
w - Decision hyperplane normal vector
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r - Regularity score

5 - Anomaly score

thr - A threshold for anomaly score

W, - The width of output tensor of layer [
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