

Thèse de doctorat

Pour obtenir le grade de Docteur de l'Université

POLYTECHNIQUE HAUTS-DE-FRANCE

Spécialité micro et nanotechnologies, acoustiques et télécommunications

Présentée et soutenue par Doan LE ANH.

Le 01/03/2019, à Valenciennes

Ecole doctorale : Sciences Pour l'Ingénieur (SPI)

Equipe de recherche, Laboratoire :

Institut d'Electronique, de Micro-Electronique et de Nanotechnologie/Département d'Opto-Acousto-Electronique (IEMN/DOAE)

Du micro véhicule aérien au nano véhicule aérien : études théoriques et expérimentales sur un insecte artificiel à ailes battantes

Composition du jury

Président du jury M. André PREUMONT, Professeur des Universités, ULB / Active Structures Laboratory, Bruxelles

Rapporteurs

M. Bruno ALLARD, Professeur des Universités, INSA de Lyon / Laboratoire Ampère, Lyon M. Ramiro GODOY-DIANA, Chargé de recherches CNRS HDR, ESPCI / PMMH, Paris

Examinateur Mme Guylaine POULIN-VITTRANT, Chargé de recherches CNRS, INSA-CVL GREMAN, Blois

Directeurs de thèse

M. Éric CATTAN, Professeur des Universités, UPHF / IEMN, Valenciennes M. Sébastien GRONDEL, Professeur des Universités, UPHF / IEMN, Valenciennes

Membre invité

M. Olivier Thomas, Professeur des Universités, ENSAM/ LSIS, Lille

Abstract

In recent decades, the prospect of exploiting the exceptional flying capacities of insects has prompted much research on the elaboration of flapping-wing nano air vehicles (FWNAV). However, when designing such a prototype, designers have to wade through a vast array of design solutions that reflects the wide variety of flying insects to identify the correct combination of parameters to meet their requirements. To alleviate this burden, the purpose of this work is to develop a suitable tool to analyze the kinematic and power behavior of a resonant flexible-wing nano air vehicle. The key issue is evaluating its efficiency. However, this ultimate objective is extremely challenging as it is applied to the smallest flexible FWNAV. However, in this work, we worked first with a flapping-wing micro air vehicle (FWMAV) in order to have a tool for the simulation and experimentation of wing actuation, take-off and hovering. Some of the knowledge and experience acquired will then be transferred to better understand how our FWNAV works and identify the energy, power distribution.

Although both of the vehicles employ the insect wing kinematics, their wings actuation mechanisms are not the same due to their sizes difference. Since the FWNAV is smaller, their wings flap at a higher frequency than the FWMAV as inspired by nature. As a consequence, from MAV to NAV, the wing actuation mechanism must be changed. Throughout this work, it can be seen clearly that this difference affects the whole vehicles development including the design, the manufacturing method, the modeling approach and the optimizing process. It has been demonstrated that the simulations are in good correlation with the experimental tests. The main result of this work is the proper wing kinematics of both FWMAV and FWNAV which leads to a lift to the weight ratio bigger and equal to one respectively. The FWMAV is even success to take-off and vertically stable hover. Moreover, taking advantage of the Bond Graph-based models, the evolution power according to the wing dynamic and the efficiency of the subsystem can be evaluated. In conclusion, this study shows the key parameters for designing and optimizing efficiency and the lift generated for two flapping wing vehicles in different size regimes.

Keywords: nano air vehicles, micro air vehicle, flapping-wing, power, energy, Bond Graph

i

Résumé

Au cours des dernières décennies, la possibilité d'exploiter les capacités de vol exceptionnelles des insectes a été à l'origine de nombreuses recherches sur l'élaboration de nano-véhicules aériens (NAVs) à ailes battantes. Cependant, lors de la conception de tels prototypes, les chercheurs doivent analyser une vaste gamme de solutions liées à la grande diversité des insectes volants pour identifier les fonctionnalités et les paramètres adaptés à leurs besoins. Afin d'alléger cette tâche, le but de ce travail est de développer un outil permettant à la fois d'examiner le comportement cinématique et énergétique d'un nano-véhicule aérien à ailes flexibles résonantes, et donc d'évaluer son efficacité. Cet objectif reste néanmoins extrêmement difficile à atteindre car il concerne des objets de très petites tailles. Aussi, nous avons choisi tout d'abord de travailler sur un micro-véhicule aérien (MAV) à ailes battantes. Il s'agit avant tout de valider l'outil de modélisation à travers une comparaison systématique des simulations avec des résultats expérimentaux effectués lors de l'actionnement des ailes, puis au cours du décollage et du vol stationnaire du prototype. Une partie des connaissances et expériences acquises pourra ensuite être utilisée afin de mieux comprendre le fonctionnement et identifier la distribution d'énergie au sein du NAV.

Bien que les deux véhicules s'inspirent directement de la cinématique des ailes d'insectes, les mécanismes d'actionnement des ailes artificielles des deux prototypes ne sont pas les mêmes en raison de la différence de taille. Comme le NAV est plus petit, ces ailes ont un mouvement de battement à une fréquence plus élevée que celles du MAV, à l'instar de ce qui existe dans la nature. En conséquence, lorsque l'on passe du MAV au NAV, le mécanisme d'actionnement des ailes doit être adapté et cette différence nécessite d'une part, de revoir la conception, l'approche de modélisation et le processus d'optimisation, et d'autre part, de modifier le procédé de fabrication. Une fois ces améliorations apportées, nous avons obtenu des résultats de simulations en accord avec les tests expérimentaux. Le principal résultat de ce travail concerne l'obtention pour les deux prototypes, le MAV et le NAV, d'une cinématique appropriée des ailes, qui conduit à une force de portance équivalente au poids. Nous avons d'ailleurs démontré que le MAV était capable de décoller et d'avoir un vol stationnaire stable selon l'axe vertical. En tirant parti des modèles basés sur le langage Bond Graph, il est également possible d'évaluer les performances énergétiques de ces prototypes en fonction de la dynamique de l'aile. En conclusion, cette étude contribue à la définition des paramètres essentiels à prendre en compte lors de la conception et l'optimisation énergétique de micro et nano-véhicules à ailes battantes.

Mots clés: nano-véhicules aérien, micro-véhicule aérien, ailes battantes, puissance, énergie, Bond Graph

Preface

This dissertation is formatted in accordance with the regulations of the University of Polytechnique Haut-de-France and submitted in partial fulfillment of the requirements for a PhD degree awarded jointly by the University of Polytechnique Haut-de-France. Versions of this dissertation will exist in the institutional repositories of this university.

All aspects of the material appearing in this thesis have been originally written by the author unless otherwise stated.

This work has been done in the IEMN-DOAE laboratory under the supervision of Prof. Sébastien Grondel, and Prof. Eric Cattan.

A version of chapter 4 has been submitted. [A.L. DOAN], D. Faux, O. Thomas, S. Grondel, E. Cattan, Kinematic and power behavior analysis of a resonant flexible-wing nano air vehicle using a Bond Graph approach, January 2019. All the experiments and simulations were conducted by the author under the supervision of Prof. Sébastien Grondel, and Prof. Eric Cattan.

A version of chapter 3 was presented at the International Micro Air Vehicle conference and Flight Competition on the flapping wing MAV, 2017 (A.L. DOAN, C. Delebarre, S. Grondel, E. Cattan, Bond Graph based design tool for a passive rotation flapping wing IMAV2017, p. 242).

A version of chapter 4 was presented at the International Mechatronics conference on the flapping wing MAV, 2017 (A.L. DOAN, D. Faux, S. Dupont, S. Grondel, E. Cattan, Modeling and simulation of the vertical takeoff and energy consumption of a vibrating wing nano air vehicle REM2016, p. 123).

Table of Contents

Abstract	i
Résumé	iii
Preface	v
Table of Contents	vii
List of Figures	xi
List of Tables	xvii
Abbreviations	xix
Acknowledgements	xxi
Dedication	xxiii
General introduction	1
Chapter 1: Literature reviews	5
1.1 Current and potential applications of UAVs and small UAVs	6
1.2 MAV and NAV specifications	7
1.3 Classification of MAVs and NAVs	8
1.3.1 Fixed-wing	9
1.3.2 Rotary-wing	10
1.3.3 Flapping-wing	12
1.4 Flapping flight	14
1.4.1 Flapping flyer kinematics	16
1.4.2 Wing actuation mechanisms	18
1.4.3 Unsteady mechanisms in flapping flight	19
1.4.3.1 Wagner effect	20
1.4.3.2 Kramer effect (rotational forces)	21
1.4.3.3 Added mass	21
1.5 Flying modes	22
1.5.1 Gliding flight	22
1.5.2 Flapping forward flight	24
1.5.3 Hovering flight	26
1.6 Review of component selection of flapping MAVs and NAVs	27
1.6.1 Flapping-wing actuators	28
1.6.2 Tail, sail, and tailless	29

1.6.3 Control scheme for flapping-wing vehicles	31
1.6.4 Number of wings	
1.6.5 Wing rotational principle	
1.7 Summarization and motivation	
Chapter 2: FWMAV model and design	39
2.1 Introduction	40
2.2 FWMAV dynamic model	40
2.2.1 Flapping and rotating kinetics	42
2.2.2 Modeling of the submodels	43
2.2.2.1 Motor Driver and geared motor	43
2.2.2.2 Modeling of the aerodynamic forces	45
2.2.2.3 Dynamic equation of FWMAV wing motion	49
2.2.2.4 Complete Bond Graph model	55
2.2.3 FWMAV parameters	57
2.2.3.1 Wing parameters	57
2.2.3.2 Geared motor parameters	57
2.2.3.3 Helical spring stiffness	58
2.3 Optimization	59
2.3.1 Initial prototype	59
2.3.2 Parameter optimization	62
2.3.2.1 Sensitivity to spring stiffness and driving frequency	62
2.3.2.2 Sensitivity to the input voltage	64
2.3.2.3 Sensitivity to wing flexural stiffness	65
2.3.2.4 Sensitivity to wing offset (<i>dw</i>)	68
2.3.3 Final prototype	70
2.4 Conclusion of the MAV design	71
Chapter 3: Towards the construction of a FWMAV able to take off and to	
stabilize	73
3.1 Material preparation and assembly work	74
3.1.1 Motor and motor driver selections	74
3.1.2 Wing fabrication	76
3.1.3 Wing's stiffness determination	76
3.1.4 Wing's damping coefficient	79

	82
3.1.6 Assembly step	82
3.2 Experimental analysis of the wing movement and generated lift	83
3.3 Validation	85
3.3.1 Frequency response	85
3.3.2 Input voltage response	87
3.3.3 Wing kinematic in desired working condition	88
3.3.4 Take-off demonstration	89
3.4 Altitude control	90
3.4.1 Image processing	96
3.4.2 Manual tuning PID	97
3.5 Development of an electronic circuit:	
3.5.1 Electronic components:	101
3.6 Analysis of power and energy consumption	102
3.6.1 MAV power consumption analysis	103
3.6.2 Energy analysis	106
3.6.3 Efficiency of the FWMAV	107
3.7 Conclusion	
Chapter 4: Kinematic and power behavior analysis of OVMI	
4.1 Introduction	110
4.2 OVMI Dynamic Bond Graph model	111
4.2.1 Prototype description	111
4.2.2 OVMI Word Bond Graph	112
4.2.2 OVMI Word Bond Graph 4.2.3 Bond Graph model	112 113
4.2.2 OVMI Word Bond Graph4.2.3 Bond Graph model4.2.3.1 Generator Bond Graph model	112 113 113
 4.2.2 OVMI Word Bond Graph 4.2.3 Bond Graph model 4.2.3.1 Generator Bond Graph model 4.2.3.2 Electromagnetic actuator Bond Graph model 	112 113 113 113
 4.2.2 OVMI Word Bond Graph 4.2.3 Bond Graph model 4.2.3.1 Generator Bond Graph model 4.2.3.2 Electromagnetic actuator Bond Graph model 4.2.3.3 "Wings" Bond Graph model 	
 4.2.2 OVMI Word Bond Graph 4.2.3 Bond Graph model 4.2.3.1 Generator Bond Graph model 4.2.3.2 Electromagnetic actuator Bond Graph model 4.2.3.3 "Wings" Bond Graph model 4.2.3.4 Global system modeling 	
 4.2.2 OVMI Word Bond Graph 4.2.3 Bond Graph model 4.2.3.1 Generator Bond Graph model 4.2.3.2 Electromagnetic actuator Bond Graph model 4.2.3.3 "Wings" Bond Graph model 4.2.3.4 Global system modeling 4.2.4 Parameter estimation 	
 4.2.2 OVMI Word Bond Graph	
 4.2.2 OVMI Word Bond Graph	
 4.2.2 OVMI Word Bond Graph	
 4.2.2 OVMI Word Bond Graph	

4.3.2 Wing kinematic concept validation	122
4.3.3 Dynamic power analysis	124
4.3.3.1 Power partition versus working mode	125
4.3.3.2 Kinetic and potential energy versus wing movement	125
4.3.3.3 . Power distribution versus aeroelastic effect	128
4.4 Conclusion1	128
Conclusion and perspective	131
References	135
Appendix	147
A.1.Chapter1:Literature reviews	147
A.1.1: Selection criteria for different rotary-wing typologies	147
A.1.2 Unsteady aerodynamics	148
A.2.Chapter2: FWMAV model and design	152
A.2.1: Aerodynamic models of insect-like flapping wings	152
A.2.2: Bond Graph presentation for FWMAV wings	155
A.2.3: Derive dynamic euqation of the wing from the Bond Graph presentation	155
A.3.Chapter 3: Towards the construction of a FWMAV able to take off and to stabilize 2	157
A.3.1: Schematic and layouts of electronic circuit developed for the FWMAV	157
A.4 Chapter 4: Kinematic and power behavior analysis of OVMI	160
A.4.1: Fabrication process	160

List of Figures

Figure 1.1: MAV and NAV flight range compared to existing flying vehicles and species [38]8
Figure 1.2: Fixed, rigid, and flexible wings, (a) transparent Black Widow by AeroVironment
[39], (b) a flexible-wing design developed at the University of Florida [40]
Figure 1.3: Graphic representation of rotary-wing configurations: a) conventional, b) ducted
coaxial, c) conventional coaxial, d) side-by-side rotors, e) synchropter, f) conventional
tandem, g) quadrotor [48], [49]10
Figure 1.4: Examples of rotary-wing MAVs and NAVs, (a) the Black Hornet, (b) Crazyflie, (c)
Mesicopter, (d) Picoflyer11
Figure 1.5: Reynolds number range for flying bio-systems and flying vehicles adapted from
[56]. The NAV does not have the lower limit, it should be any vehicle with Re number and
weight smaller than those of the MAV12
Figure 1.6: Relationship between weight and flying time of existing MAVs (2014 data).
Names of fixed, rotary, and flapping-wing vehicles are in violet, blue, and red, respectively.
Only crucial dimensions corresponding to each wing category are displayed to indicate the
vehicle size. For instance, wingspan depicts the size of flapping and fixed-wing MAVs, while
the 3D dimensions of quadrotor and rotor diameter are used for other rotary-wing vehicles.14
Figure 1.7: Superimposed frames showing typical landing maneuvers of a honeybee [63]15
Figure 1.8: Video sequence using the prism platform showing a typical escape. White dots
on the image mark the points on the head and abdomen used to determine the center of
mass of the fly (black and white circle) at three time points: stimulus onset ($t0$), immediately
before the jump (<i>tpre</i>), and the moment of takeoff (<i>tjump</i>). The red dot marks the contact
point of the tarsus (final segment of legs of insects) with the surface at $t0$ [64]15
Figure 1.9: Wing movement cycle of a gull during normal flight [66]16
Figure 1.10: Basic flapping wing kinematics: a) Wing path described by the trajectory of a
particular wing chord; b) Snapshots of this wing chord during upstroke and downstroke
demonstrating its translational motion and stroke reversal including supination and
pronation; c) Evolution of flapping and rotating in quadrature over time [68] [10]17
Figure 1.11: a) bird flight apparatus [69], insects and their flight apparatus: b) direct and c)
indirect muscles [70] [71]
Figure 1.12: Vortex system and development of bound circulation around an airfoil starting
from rest [74]20
Figure 1.13: High-lift devices used in aircraft and their equivalents in flying animals, [85],
[86]23
Figure 1.14: Vortex generators used in aircraft (left) and their equivalents in flying animals,
a) Protruding digit on a bat wing, b) Serrated leading-edge feather of an owl, c) Corrugated
dragonfly wing, adapted from [85], [86]23

Figure 1.15: Lateral view of flapping motions illustrating the path of the wingtip (filled
circles) and wrist (open circles) adapting to steady-speed flight [89]24
Figure 1.16: Wingtip paths relative to the body – indicated by arrows – for a variety of flyers.
a) albatross, fast gait; b) pigeon, slow gait; c) horseshoe bat, fast flight; d) horseshoe bat,
slow gait; e) blowfly; f) locust; g) June Beetle; h) fruit fly [90]25
Figure 1.17: Flow structures for a) slow and b) fast forward flapping flight [89]
Figure 1.18: Three-dimensional vortex structures in the flow during a stroke cycle of a ruby-
throated hummingbird, where the time stamp from (a) to (d) is 0.37, 0.51, 0.58, and 0.78T (T
is the stroke cycle). The dashed lines mark the vortex loop from the downstroke. The thick
arrow in (d) indicates the location where the LEV is pinched off [93]
Figure 1.19: Different tail designs: a) conventional airplane tail [114], b) DelFly I V-tail, and c)
DelFly II Inverted V-tail [36]
Figure 1.20: MAV Sails: a) Mentor [2007]; b) Richter and Lipson [2011]; c) Jellyfish robot
[2014]
Figure 1.21: Periodic wing motion parameters: a) stroke amplitude, symmetric or
asymmetric wingbeat frequency, and wing stroke bias angle, b) stroke-plane tilt angle, c)
and d) angle of attack between downstroke and upstroke
Figure 1.22: Split-cycle constant-period frequency modulation, control strategies of flapping
MAV: a) Vertical translation, b) Horizontal translation, c) Yawing motion, and d) Rolling
motion from Doman and Oppenheimer [2014]
Figure 1.23: Different wing configurations: (I) Conventional wing, Robo Raven; (II)
BionicOpter Dragonfly; unconventional wing including DelFly II with a single clap-and-fling
mechanism (IIIa), Delfly Micro with a double clap-and-fling mechanism (IIIb), and Mentor
with a multiple clap-and-fling mechanism [36]
Figure 1.24: Relationship between a) wing length and total mass, b) wing length and flapping
frequency, adapted from [124]37
Figure 2.1: MAV structure definition40
Figure 2.2: FWMAV Word Bond Graph41
Figure 2.3: Prototype with a mass-spring-damper system adapted from [95]41
Figure 2.4: Schematic of the passive rigid wing42
Figure 2.5: Anterior and distal views of the wing43
Figure 2.6: Mechanical model of a DC torque motor connected through gearing to an inertial
load [125]43
Figure 2.7: Bond Graph representation of the motor driver and geared motor
Figure 2.8: Wing geometry47
Figure 2.9: Translational and rotational forces on each wing strip
Figure 2.10: Wing section and parameters for calculating the added mass forces adapted
from [86]48
Figure 2.11: 1-junction arrangement52

Figure 2.12: Flow connections
Figure 2.13: Bond Graph representation of the FWMAV wing and the corresponding
aerodynamics54
Figure 2.14: FWMAV Bond Graph representation. Several power and energy sensors are
added for the power and energy analysis in Chapter 3 (Section 3.6)
Figure 2.15: a) The trajectory and b) corresponding aerodynamic forces of one wing60
Figure 2.16: Aerodynamic forces of the lift and drag components61
Figure 2.17: The added mass force helps wing rotation. Lift component (red arrow), drag
component (blue arrow), <i>Fair</i> (black arrow)62
Figure 2.18: Effect of spring stiffness and excitation frequency on flapping amplitude (a) and
mean lift (b). Thirty springs of different stiffness were tested over a driving frequency range
of 0 Hz to 40 Hz. Each spring represents a system portrayed by a unique color. Only the first
five and last three systems are plotted in full for clarity. The dashed blue lines represent the
maximum flapping and lift values for the others. The first seven springs are provided in the
figure legend for detailed discussions63
Figure 2.19: Flapping amplitude (a) and mean lift force (b) as a function of the input voltage
A simulation with a sweep of the input voltage from [0.5 5] V was conducted on the first
seven systems discussed in section 2.3.2.1. Each system was excited at the frequency where
maximum mean lift occurs65
Figure 2.20: Average translational force coefficients as a function of the angle of attack [79].66
Figure 2.21: Sensitivity to variations in wing flexural stiffness. The FWMAV system with a
spring stiffness of 2.95e3 mN.mm/rad was stimulated using an input voltage of 4.5 V at 10
Hz. The wing bending stiffness ranged from 1e-4 N.m/rad to 4e-4 N.m/rad67
Figure 2.22: Effect of variation of wing offset. The FWMAV system with a spring stiffness of
2.95e3 mN.mm/rad was stimulated using an input voltage of 4.5 V at 10 Hz. The wing offset
d_w ranged from 0 m to 0.06 m69
Figure 2.23: Wing kinematics a) and lift components of aerodynamic forces (b)70
Figure 3.1: a) Motor GM15A, b) planetary gearhead of GM15A, c) Pololu DRV8835 dual
motors driver shield for Arduino [141]74
Figure 3.2 : PWM approximated sinusoidal voltage75
Figure 3.3 : a) asymmetric flapping wing movement caused by b) input voltage offset75
Figure 3.4 : Picture of FWMAV's wing configuration76
Figure 3.5 : Diagram and experimental setup for measuring the rubber stiffness77
Figure 3.6 : Wing's stiffness with the rubber part (9mm). Each measurement is repeated
three times (colored circles). The stiffness value of the rubber kw is a value within the range
of minimum stiffness kmin and maximum stiffness kmax78
Figure 3.7 : Set-up of damping coefficient determination experiment and its diagram80
Figure 3.8 : Variation in rotational angle as a function of time. Local maximum and minimum
of free oscillation are represented by red and yellow stars, respectively

Figure 3.9 : First FWMAV prototype : a) Designed prototype and b) Fabricated one
Figure 3.10 : Level arm configuration for lift measurement experiment
Figure 3.11 : Diagram of wing observation: experimental setup85
Figure 3.12 : Wing movement and lift observations experimental setup
Figure 3.13 : Measured lift versus driving frequency. Frequency is change for every two
second from 1 to 20 Hz
Figure 3.14: a) Amplitude of flapping angle, b) average lift for various input voltage
frequencies. The experimental and simulation data are represented by continuous and
dashed lines, respectively
Figure 3.15 : Generated lift versus driving voltage. Voltage is changed every two second
from 0.5 to 5.5V
Figure 3.16 : Amplitude of a) flapping angle, b) mean lift for various input voltages.
Experiment and simulation data are plotted in continuous and dashed lines respectively88
Figure 3.17 : Wing kinematic at $4.87 \sin(2\pi 10t)$ V. Flapping and rotation curves are in red
and blue, respectively. The dashed lines represent the corresponding simulation data89
Figure 3.18 : Demonstration of take-off. The white and red dots are the initial and current
position of the FWMAV, respectively. After 7 s the vehicle was 6.5 cm above its initial
position
Figure 3.19 : Basic close loop control plan. The controller adjusts the system behavior to
reach the designed reference (error = 0)
Figure 3.20 : Different sensors for the altitude control plans and their corresponding setups.
From left to right, inertial measurement unit (IMU), IR distance sensor and video tracking
camera
Figure 3.21 : Red spot tracking process: a) real-time snapshot frame, b) gray image from RGB
frame, c) subtraction of red component and filtering out unwanted noise using median
filter, d) conversion of resulting grayscale image into a binary image, e) removal of all spots
smaller than 100 pixels, f) outlining of the red object with a rectangular box
Figure 3.22 : Altitude control experiment setup
Figure 3.23 : Performance of manual PID tuning to control the altitude of flapping flight. a)
Vehicle position in pixels, b) controlled voltage. A is the voltage amplitude, Amax is the
maximum voltage without wing collision (4.87 V)
Figure 3.24 : Design of the electronic board a) principle, b) main components and their
interfaces with the microcontroller
Figure 3.25 : An electronic circuit fabricated by Thurmelec (2 g and 3 mm x 3.8 mm), a) front,
b) back
Figure 3.26 : Power distribution in the FWMAV developed. Red rectangles represent
dissipated power and green rectangles represent storage power. P _{in} and P _{mechanic} are in
yellow rectangles. Arrow directions represent the direction of power

Figure 3.27 : General power analysis. The simulation and experimental input power (Pinexp
and P_{in}) are plotted on the same graph to highlight the coherence. P_D is defined as the sum
of the dissipated power (P _{R0} , P _{bm} , and P _{eff}) and P _S is the sum of P _{mechanic} and P _{Jm} . P _{max} and P _{min}
are found for P _s but can be applied to the other power sources104
Figure 3.28 : Dissipated power at the motor. The power dissipates more at the motor coil;
only a small portion is due to motor efficiency
Figure 3.29 : Power distribution at the wing. <i>PSw</i> is the sum of <i>Pflap</i> and <i>Prot</i>
Figure 3.30: Relationship between the kinetic and potential energy and the flapping and
rotation movements
Figure 3.31 : Efficiencies of the motor, the wing and the whole system
Figure 4.1: OVMI prototype with wings and electromagnetic actuator with a total mass of 22
mg and a wingspan of 22 mm 111
Figure 4.2: a) diagram of a flexible wing with two degrees of freedom, b) simulated bending
mode, c) simulated twisting mode 112
Figure 4.3: Word Bond Graph of the prototype 112
Figure 4.4: Generator Bond Graph model 113
Figure 4.5: Representation of an electromagnetic actuator, a) through an equivalent
electrical circuit b) through a Bond Graph formalism
Figure 4.6: Presentation of the average magnetic field 114
Figure 4.7: Diagram of the "Wings" skeleton; the colors are used to distinguish between
vicinal beams 115
Figure 4.8: Bond Graph representation of OVMI "Wings" 117
Figure 4.9: Global OVMI Bond Graph model 118
Figure 4.10: Photograph of a prototype placed in a vacuum chamber used to quantify the
influence of the surrounding pressure on its dynamic behavior119
Figure 4.11: Evolution of the quality factor according to the surrounding pressure
Figure 4.12: Simulated Bond Graph amplitude and frequency response phase of the
prototype. a) amplitude of free end of beam 2 (1) and its corresponding portions including
bending (2) and twisting (3) modal coordinates; b) bending (2) and twisting (3) phases and
the difference (4) 121
Figure 4.13: Wing kinematics in a) bending mode (f = 132.5 Hz), b) twisting mode (f = 151.4
Hz), c) quadrature mode 1 (f = 135.5 Hz) and d) quadrature mode 2 (f = 148.0 Hz) 122
Figure 4.14: Experimental deflection shape at resonance: (a) flapping mode; (b) twisting
mode. (c) FRF of the prototype taken at the magnet and leading edge left wing, zoomed
over the frequency range of interest. (d) Average lift force over one period for several
excitation frequencies. Polynomial curve fit [10] 123
Figure 4.15: Several frames captures using high-speed camera at the second quadrature
actuation frequency (190.8 Hz). Blue dashed line: initial chord position; Orange dashed line:
current chord position. Slope inversion occures around frame 4 [10]

Figure 4.16: Reactive energy (1st row), wing displacement at the tip of the leading edge (2nd
row), and evolution of lift (3rd row)	127
Figure 4.17: FRF of the free end of the leading edge in a vacuum and in the air	128

List of Tables

Table 1.1: Actuator categories adapted from [100] [101]	28
Table 2.1: Polynomial coefficients	57
Table 2.2: Motor parameters	58
Table 2.3: Wing parameters	58
Table 2.4: Summarization of optimized parameters	71
Table 3.1 : Stiffnesses of rubbers according to their lengths	79
Table 3.2 : Springs characteristic	82
Table 3.3 : Mass of components of the FWMAV	
Table 3.4 : Review of control plans from numerous studies	93
Table 3.5 : Effect of increasing gains separately	98
Table 4.1: "Wings" parameters	120
Table 4.2: Power distribution, power is in Watts. $\%P1$ and $\%P3$ are percentages of	
Pmechanic	125
Table 4.3: Comparison of power (in Watts) calculated in air (At) and in	vacuum
(Vac)12	8

Abbreviations

UAVs	Unmanned aerial vehicles
DC	Direct Current
MAV	Micro Air Vehicles
NAV	Nano Air Vehicles
FWMAV	Flapping Wing Micro Air Vehicles
FWNAV	Flapping Wing Nano Air Vehicles
SNCF	Society of French railways
Re	Reynold number
CDF	Computational Fluid Dynamics
LEV	Leading edge vortex
TEV	Trailling edge vortex
BEM	Blade Element Method
ASIC	Application Specific Integrated Circuit
IC	Integrated circuit

Acknowledgements

I wish to express my deepest gratitude to two Professors, **Sébastien Grondel** and **Eric Cattan**, my advisors, for his guidance, patience and careful supervision towards my academic program. My study in the laboratory IEMN-DOAE and this thesis would not be done and completed without his persistent support and encouragement. He showed me how to be an intelligent scholar who rigorously pursues the truth. He made me know that I can do things that I thought to be beyond my capacity.

I would like to express thanks to Associate Professor **Thi Muoi Le**. She was the first person who helped, encouraged me to come to Valenciennes to study.

I gratefully acknowledge and would like to express special thanks to my friend **Damien Faux**, who allowed me to use a part of his research for my work. He has given me also a lot of constructive comments and valuable suggestions all the way long.

I am especially indebted to the **Polytechnic University of Hauts-de-France** for granting me study leave and supporting me during my stay.

I would like to express thanks to my all friends in France who bring me so much fun!

Finally, I owe an immeasurable indebtedness to my family who has always stayed beside me. Their continuous support and encouragement have been my sources of confidence that my study and my work in France would eventually be completed!

Best regards, THANKS ALL!!!

Dedication

I dedicate this thesis

To the memory of my late grandparent