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Preface

In 1998, in times of ever increasing computer power, I had the unusual idea of writing my
own finite element program, with just 20-node brick elements for elastic fracture-mechanics
calculations. Especially with the program FEAP as a guide, it proved exceedingly simple
to get a program with these minimal requirements to run. However, time has shown that
this was only the beginning of a long and arduous journey. I was soon joined by my
colleague Klaus Wittig, who had written a fast postprocessor for visualizing the results
of several other finite element programs and who thought of expanding his program with
preprocessing capabilities. He also brought along quite a few ideas for the solver. Coming
from a modal-analysis department, he suggested including frequency and linear dynamic
calculations. Furthermore, since he was interested in running real-size engine models, he
required the code to be not only correct but also fast. This really meant that the code was
to be competitive with the major commercial finite element codes. In terms of speed, the
mathematical linear equation solver plays a dominant role. In this respect, we were very
lucky to come across SPOOLES for static problems and ARPACK for eigenvalue problems,
both excellent packages that are freely available on the Internet. I think it was at that time
that we decided that our code should be free. The term “free” here primarily means freedom
of thought as proclaimed by the GNU General Public License. We had profited enormously
from the free equation solvers; why would not others profit from our code?

The demands on the code, but, primarily, also our eagerness to include new features,
grew quickly. New element types were introduced. Geometric nonlinearity was imple-
mented, hyperelastic constitutive relations and viscoplasticity followed. We selected the
name CalculiX®, and in December 2000 we put the code on the web. Major contributions
since then include nonlinear dynamics, cyclic symmetry conditions, anisotropic viscoplas-
ticity and heat transfer. The comments and enthusiasm from users all over the world
encourage us to proceed. But above all, the conviction that one cannot master a theory
without having gone through the agony of implementing it ever anew drives me to go on.

This book contains the theory that was used to implement CalculiX®. This implies
that the topics treated are ready to be coded, and, with a few exceptions, their practical
implementation can be found in the CalculiX® code (www.calculix.de). One of the criteria
for including a subject in CalculiX® or not is its industrial relevance. Therefore, topics such
as cyclic symmetry or multiple point constraints, which are rarely treated in textbooks,
are covered in detail. As a matter of fact, multiple point constraints constitute a very
versatile workhorse in any industrial finite element application. Conditions such as rigid
body motion, the application of a mean rotation, or the requirement that a node has to
stay in a plane defined by three other moving nodes are readily formulated as nonlinear



Xiv PREFACE

multiple point constraints. Clearly, new theories have to face several barriers before being
accepted in an industrial environment. This especially applies to material models because
of the enormous cost of the parameter identification through testing. Nevertheless, a couple
of newer models in the area of anisotropic hyperelasticity and single-crystal viscoplasticity
are covered, since they are the prototypes of new constitutive developments and because
of the analytical insight they produce.

Although the applications are very practical, the theory cannot be developed without a
profound knowledge of continuum mechanics. Therefore, a lot of emphasis is placed on the
introduction of kinematic variables, the formulation of the balance laws and the derivation
of the constitutive theory. The kinematic framework of a theory is its foundation. Among
the kinematic tensors, the deformation gradient plays a special role, as amply demonstrated
by the multiplicative decomposition used in viscoplastic theories. The balance equations
in their weak form are the governing equations of the finite element method. Finally, the
constitutive theory tells us what kind of conditions must be fulfilled by a material law
to make sense physically. The knowledge of these rules is a prerequisite for the skillful
description of new kinds of materials. This is clearly shown in the treatment of hyperelastic
and viscoplastic materials, both in their isotropic and anisotropic form.

The only prerequisite for reading this book is a profound mathematical background in
tensor analysis, matrix algebra and vector calculus. The book is largely self-contained, and
all other knowledge is introduced within the text. It is oriented toward

1. graduate students working in the finite element field, enabling them to acquire a
profound background,

2. researchers in the field, as a reference work,

3. practicing engineers who want to add special features to existing finite element pro-
grams and who have to familiarize themselves with the underlying theory.

This book would not have been possible without the help of several people. First, I
would like to thank two teachers of mine: Lic. Antoine Van de Velde, for introducing me to
the fascinating world of calculus, and Professor A. Cemal Eringen, for acquainting me with
continuum mechanics. Readers of his numerous publications will doubtless recognize his
stamp on my thinking. Further, I am very indebted to my colleague and friend Klaus Wittig;
together we have developed the CalculiX® code in a rare symbiosis. His encouragement
and the ever new demands on the code were instrumental in the growth of CalculiX®.
I would also like to thank all the colleagues who read portions of the text and gave
valuable comments: Dr Bernard Fedelich (Bundesanstalt fiir Materialforschung), Dr Hans-
Peter Hackenberg (MTU Aero Engines), Dr Stefan Hartmann (University of Kassel), Dr
Manfred Kéhl (MTU Aero Engines), Dr Joop Nagtegaal (ABAQUS®), Dr Erhard Reile
(MTU Aero Engines), Dr Harald Schonenborn (MTU Aero Engines) and others. Last but
not least, I am very grateful to my wife Barbara and my children Jakob and Lea, who
bravely endured my mental absence of the last few months.
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