Multilayer Thin Films
Sequential Assembly of Nanocomposite Materials

Edited by Gero Decher and Joseph B. Schlenoff
Foreword by Jean-Marie Lehn
Multilayer Thin Films
Sequential Assembly of Nanocomposite Materials

Edited by G. Decher, J. B. Schlenoff
Multilayer Thin Films

Sequential Assembly of Nanocomposite Materials

Edited by
Gero Decher, Joseph B. Schlenoff
Over the last ten years, scientists from varying backgrounds have rallied around a versatile new method for the synthesis of thin films. Because the layer-by-layer assembly method provides opportunities for creative design and application of function-specific films, the field has experienced an initial period of exponential growth. This book, the first on the topic, contains many insightful contributions from leaders in the field that will enable novices and experts to understand the promises and premises of multilayers.

Readers will instantly identify with a particular aspect of the technology, whether it is the design and synthesis of new polymeric or nanoparticulate building blocks, understanding the polymer physical chemistry of multilayers, or characterizing their optical, electrical or biological activities. The reasons for the intense interest in the field are also clearly evident: multilayers bridge the gap between monolayers and spun-on or dip-coated films, and they provide many of the aspects of control found in classical Langmuir-Blodget (LB) films, yet multilayers are more versatile, in many respects, and easier to create.

This book is an essential and welcome addition to the literature on thin films. Readers with interests in self-assembled systems, supramolecular chemistry, nanocomposites or polymers will find themselves fascinated by the diversity of topics herein. The message that multilayers are making significant inroads into numerous aspects of chemistry, physics and biology is made clear. The editors and authors are to be commended for creating a comprehensive yet readable volume.

Jean-Marie Lehn
Contents

Foreword V
Preface XV

List of Contributors XVII

1 Polyelectrolyte Multilayers, an Overview 1
G. Decher

1.1 Why is the Nanoscale so Interesting 1
1.2 From Self-Assembly to Directed Assembly 1
1.3 The Layer-by-Layer Deposition Technique 3
1.3.1 LbL Deposition is the Synthesis of Polydisperse Supramolecular Objects 4
1.3.2 Reproducibility and Deposition Conditions 6
1.3.3 Monitoring Multilayer Buildup 7
1.3.3.1 Ex-situ Characterisation 7
1.3.3.2 In-situ Characterisation 9
1.3.4. Multilayers by Solution Dipping, Spraying or Spin Coating 12
1.3.5 Post-preparation Treatment of Multilayer Films 12
1.3.5.1 Annealing 12
1.3.5.2 Photopatterning 15
1.4 Multilayer Structure 16
1.4.1 The Zone Model for Polyelectrolyte Films 17
1.4.2 Layered or Amorphous: What Makes Multilayers Unique Supramolecular Species? 20
1.4.3 Soft and Rigid Materials 23
1.4.4 Deviation from Linear Growth Bahaviour 24
1.5 Multimaterial Films 24
1.6 Toward Compartmentalized Films: Barrier Layers and Nanoreactors 26
1.7 Commercial Applications 30
1.8 References 31
Fundamentals of Polyelectrolyte Complexes in Solution and the Bulk

V. Kabanov

Introduction

Interpolyelectrolyte Reactions and Solution Behavior of Interpolyelectrolyte Complexes

Kinetics and Mechanism of Polyelectrolyte Coupling and Interchange Reactions

Solution Properties of Equilibrated Nonstoichiometric Interpolyelectrolyte Complexes

Transformation of Interpolyelectrolyte Complexes in External Salt Solutions

Complexation of Polyelectrolytes with Oppositely Charged Hydrogels

Structural and Mechanical Properties of Interpolyelectrolyte Complexes in the Bulk

Conclusion

References

Polyelectrolyte Adsorption and Multilayer Formation

J.-F. Joanny and M. Castelnovo

Introduction

Polyelectrolytes in Solution

Polyelectrolytes at Interfaces

Polyelectrolyte Complexes

Multilayer Formation

Concluding Remarks

References

Charge Balance and Transport in Polyelectrolyte Multilayers

J. B. Schlenoff

Introduction

Interactions

Mechanism: Competitive Ion Pairing

Intrinsic vs. Extrinsic Charge Compensation

Key Equilibria

Swelling and Smoothing: Estimating Interaction Energies

Multilayer Decomposition

Excess Charge

Surface vs. Bulk Polymer Charge

Distribution of Surface Charge in Layer-by-Layer Buildup: Mechanism

Equilibrium vs. non-Equilibrium Conditions for Salt and Polymer Sorption

Equilibria and Transport

Ion Transport through Multilayers: the “Reluctant” Exchange Mechanism

Practical Consequences: Trapping and Self-Trapping

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Conclusions</td>
<td>127</td>
</tr>
<tr>
<td>4.6</td>
<td>References</td>
<td>130</td>
</tr>
<tr>
<td>5</td>
<td>pH-Controlled Fabrication of Polyelectrolyte Multilayers:</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>Assembly and Applications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M. F. Rubner</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>133</td>
</tr>
<tr>
<td>5.2</td>
<td>Layer-by-Layer Assembly of Weak Polyelectrolyte Multilayers</td>
<td>134</td>
</tr>
<tr>
<td>5.3</td>
<td>Light Emitting Thin Film Devices</td>
<td>137</td>
</tr>
<tr>
<td>5.4</td>
<td>Microporous Thin Films</td>
<td>139</td>
</tr>
<tr>
<td>5.5</td>
<td>Nanoreactors, Electroless Plating and Ink-jet Printing</td>
<td>141</td>
</tr>
<tr>
<td>5.6</td>
<td>Surface Modification via Selective Adsorption of Block Copolymers</td>
<td>144</td>
</tr>
<tr>
<td>5.7</td>
<td>Patterning of Weak Polyelectrolyte Multilayers</td>
<td>145</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Micro-Contact Printing</td>
<td>146</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Ink-jet Printing of Hydrogen-Bonded Multilayers</td>
<td>148</td>
</tr>
<tr>
<td>5.8</td>
<td>Conclusions and Future Prospects</td>
<td>152</td>
</tr>
<tr>
<td>5.9</td>
<td>References</td>
<td>153</td>
</tr>
<tr>
<td>6</td>
<td>Recent Progress in the Surface Sol–Gel Process and Protein Multilayers</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>I. Ichinose, K. Kuroiwa, Y. Lvov, and T. Kunitake</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Alternating Adsorption</td>
<td>155</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Surface Sol–Gel Process</td>
<td>155</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Adsorption of Cationic Compounds on Metal Oxide Gels</td>
<td>157</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Multilayer Assembly of Metal Oxides and Proteins</td>
<td>162</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Protein/Polyelectrolyte Multilayer Assembly</td>
<td>166</td>
</tr>
<tr>
<td>6.2</td>
<td>Recent Topics in Biological Applications</td>
<td>167</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Biosensors</td>
<td>168</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Nano-filtration</td>
<td>169</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Bioreactors</td>
<td>171</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Protein Capsule and Protein Shell</td>
<td>173</td>
</tr>
<tr>
<td>6.3</td>
<td>References</td>
<td>174</td>
</tr>
<tr>
<td>7</td>
<td>Internally Structured Polyelectrolyte Multilayers</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>K. Glinel, A. M. Jonas, A. Laschwesky, and P. Y. Vuillaume</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>177</td>
</tr>
<tr>
<td>7.2</td>
<td>Experimental Considerations</td>
<td>179</td>
</tr>
<tr>
<td>7.3</td>
<td>Stratified Binary (A/B)\textsubscript{n} Organic Multilayers</td>
<td>182</td>
</tr>
<tr>
<td>7.4</td>
<td>Stratified Binary (A/B)\textsubscript{n} Hybrid Organic/Inorganic Multilayers</td>
<td>188</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Initial Studies on Hybrid Assemblies</td>
<td>189</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Layered Assemblies from Analogous Poly(diallyl ammonium) Salt Derivatives and Hectorite Platelets</td>
<td>190</td>
</tr>
<tr>
<td>7.4.2.1</td>
<td>General Structural Observations</td>
<td>190</td>
</tr>
<tr>
<td>7.4.2.2</td>
<td>Detailed Analysis of the Structure of Laponite-Based Hybrid LBL Films</td>
<td>192</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Ordering in Hybrid Assemblies Employing Functional Polyions</td>
<td>194</td>
</tr>
<tr>
<td>7.4.3.1</td>
<td>Photocrosslinkable Polyelectrolytes</td>
<td>194</td>
</tr>
</tbody>
</table>
10.2.2.1 Establishing the Rules for Weak Polyamine Deposition 277
10.2.2.2 Confirming the Rules of Selective Adsorption: SFM Investigations 279
10.2.2.3 Using the Rules: Side-by-Side Structures 280
10.2.2.4 The Next Steps: Surface Sorting of Multilayers and Other Elements 281
10.3 Polymer-on-Polymer Stamping 282
10.3.1 Fundamental Studies of Polymer-on-Polymer Stamping 284
10.3.1.1 Stamping of Ionic Polymers 285
10.3.1.2 Stamping of Block Copolymers 285
10.3.2 POPS as a Template for Other Materials Deposition 287
10.4 Directed Assembly of Colloidal Particles 289
10.4.1 Selective Deposition and Controlled Cluster Size on Multilayer Templates 290
10.4.2 Surface Sorting with Particles on Multilayer Surfaces 292
10.4.3 Selective Electroless Plating of Colloidal Particle Arrays 293
10.5 Functional Polymer Thin Films for Electrochemical Device and Systems Applications 294
10.5.1 Electrochromic Polyelectrolyte Multilayer Device Construction 295
10.5.2 Ionically Conducting Multilayers for Electrochemical Device Applications 296
10.6 Summary 297
10.7 References 298

11 Layered Nanoarchitectures Based on Electro- and Photo-active Building Blocks 301
X. Zhang, J. Sun, and J. Shen
11.1 Introduction 301
11.2 Multilayer Assemblies of Electroactive Species of Chemically Modified Electrodes 304
11.2.1 Controlled Fabrication of Multilayers with a Single Active Component 305
11.2.2 Controlled “Cascade” Modification with Binary Active Components 309
11.2.2.1 Bienzyme Assemblies of Glucose Oxidase and Glucoamylase 310
11.2.2.2 Alternating Assemblies of Glucose Oxidase and Polycationic Electron Transfer 313
11.2.3 The Incorporation of Conductive Species to Improve the Performance of the Modified Electrodes 314
11.3 Ionic Self-assembly of Photoactive Materials and the Fabrication of “Robust” Multilayer 318
11.3.1 Ways to Fabricate Covalently Attached Multilayer Assemblies 319
11.3.2 Stable Entrapment of Oligo-charged Molecules Bearing Sulfonate Groups in Multilayer Assemblies 323
11.3.3 Covalently Attached Multilayer Assemblies of Polycationic Diazoresins and Polyamionic Poly(Acrylic Acid) 324
11.3.4 Robust Nanoassemblies with Complex and Hybrid Structures 326

11.4 Summary and Outlook 328

11.5 References 328

12 Coated Colloids: Preparation, Characterization, Assembly and Utilization 331

F. Caruso and G. Sukhorukov

12.1 Introduction 331

12.2 Preparation and Characterization of Coated Colloids 333

12.2.1 Layer-by-Layer Adsorption 334

12.2.1.1 Multilayered Coatings 337

12.2.1.2 Coating of Specific Cores 344

12.2.2 Colloid Precipitation 349

12.3 Assembly and Utilization of Coated Colloids 351

12.3.1 Mesoscopic Arrangement 351

12.3.1.1 Colloidal Crystals 351

12.3.1.2 Macro- and Mesoporous Materials 351

12.3.2 Enzymatic Catalysis 354

12.3.2.1 Dispersions 354

12.3.2.2 Thin Films 355

12.3.3 Optical Properties 356

12.4 Summary and Outlook 358

12.5 References 359

13 Smart Capsules 363

H. Möhwald, E. Donath, and G. Sukhorukov

13.1 Preparation and Structure 364

13.1.1 General Aspects 364

13.1.1.1 Core Materials 364

13.1.1.2 Wall Materials 365

13.1.1.3 Molecular Dynamics 368

13.1.2 Physics and Chemistry of Core Removal 369

13.1.2.1 Core Destruction 369

13.1.2.2 Core Material Release 372

13.1.2.3 Modification of Walls 375

13.2 Properties and Utilization 376

13.2.1 Permeability Control 376

13.2.1.1 Permeation Mechanisms 377

13.2.1.2 Controlled Release Profiles 378

13.2.1.3 Switchable Release 379

13.2.2 Stability and Mechanical Properties 380

13.2.2.1 Temperature Dependent Structures 381

13.2.2.2 Capsule Elasticity 382

13.2.2.3 Plasticity, Viscosity and Rupture Strength 385

13.2.3 Chemistry and Physics in Nanovolumes 385

Contents XII
Contents

16 **Self-assembly and Characterization of Electro-optic Materials** 461

* R. Claus, Y.-X. Wang, L. Zhang, and K. Cooper

16.1 Nonlinear Optical Polymers 462

16.1.1 Design, Synthesis and Characterization of Polydyes 462

16.1.2 ESA Fabrication of NLO Thin Films and Their Characterization 464

16.1.3 Nonlinear Optical Measurements 467

16.2 Electrostatic Self-assembly of CLD-1 Thin Films 471

16.2.1 Modification of CLD-1 and Fabrication of CLD-1 Thin Films 471

16.2.2 Measurements of Electro-optic Properties 472

16.3 Electrostatic Self-assembly of CdSe/PDDA Thin Films 474

16.3.1 Fabrication and Characterization 475

16.3.2 Electro-optic Modulation Measurements 477

16.3.2.1 Linear Electro-optic Modulation Measurement 477

16.3.2.2 Quadratic Electro-optic Modulation 481

16.4 Summary 484

16.5 References 485

17 **Controlling the Ion-Permeability of Layered Polyelectrolyte Films and Membranes** 487

* M. Bruening

17.1 Introduction 487

17.2 Electrochemical Studies of the Permeability of MPFs 488

17.2.1 As-deposited MPFs 488

17.2.2 Cross-linked PAA/PAH Films 490

17.2.3 Derivatized Polyelectrolyte Films 493

17.3 MPFs as Ion-Separation Membranes 495

17.3.1 Membrane Formation 495

17.3.2 Permeability of PAH/PSS and PAH/PAA Membranes 496

17.3.3 Cross-linked PAA/PAH Membranes 499

17.3.4 Hybrid PSS/PAH + PAA/PAH Membranes 500

17.3.5 Controlling the Charge Density in MPMs 503

17.3.5.1 Use of Cu\(^{2+}\) Complexes to Imprint Charged Sites into PAA/PAH Films 503

17.3.5.2 Control of Intrinsically Compensated Charge Through Derivatization and Photocleavage 504

17.3.6 Highly Selective Ultrathin Polyimide Membranes Formed from Layered Polyelectrolytes 505

17.3.7 Modeling of Selective Transport Through Layered Polyelectrolyte Membranes 506

17.4 Conclusions 508

17.5 References 509

Index 511
Preface

When a new field is growing exponentially, as judged by the number of publications, presentations and patents, when is the “right” time to assemble a volume of contributed chapters from some of the acknowledged leaders in the field? What if every potential contributor is incredibly busy, following up an ever-expanding plethora of ideas and experiments? It was in this harried atmosphere that our colleagues carved out the time to write their contributions. We are extremely grateful to them for gathering their thoughts and accomplishments into chapters.

The idea for this book came together following a very successful symposium at the ACS in San Francisco 2000, which we organized. No volume on the topic had yet been published, but there was already a large store of knowledge that had been created as groups had responded enthusiastically to the promise of the first few papers appearing in the early 90’s. Multilayers had gathered a great deal of momentum, flourishing in the more “informal” space of papers, preprints, talks and word-of-mouth. By 2000, the field had simply outgrown informality.

We had been riding the wave of this activity, enjoying a growing number of colleagues. We were fully aware of the infectious nature of multilayers research, which is like a good mystery novel – hard to put down once you start. We are honored to have been in the thick of things during the early years. Every experiment was significant and the results suggested several more experiments. This dizzying atmosphere pervades even today: ask any multilayerer!

We are pleased to have edited this book. Our object was not only to document what is known about multilayers, but also to promote the potential of these versatile thin films and to facilitate the adoption of the technology by others. The field is new. We are proud of its ability to catalyze interdisciplinary thought and action. In this regard, multilayers represent a model platform for promoting modern research. Also, the intellectual distance between concept and application is minimal. Commercial applications have already been realized.

We hope the message of abundant research opportunities is made loud and clear. It is easy to get started. Easy to get “hooked.” This book is essential in showing you how. We look forward to more elegant and complex multilayered architectures and functionalities, as well as significant expansion at the biological/biomedical interface.
Finally, we would like to express our thanks to Jean-Marie Lehn for his support in writing the foreword. His “big-picture” viewpoint is sincerely appreciated.

August 2002

Gero Decher
Joe Schlenoff
List of Contributors

M. L. Bruening
Department of Chemistry
Michigan State University
East Lansing, MI 48824
bruening@cem.msu.edu
USA

F. Caruso,
Max Planck Institute of Colloids and Interfaces
D-14424 Potsdam
caruso@servg.mpikg-golm.mpg.de
Germany

M. Castelnovo
Institut Charles Sadron
6, rue Boussingault
F-67083 Strasbourg Cedex
France

R. O. Claus,
Fiber & Electro-Optics Research Center
Virginia Tech
106 Plantation Road
Blacksburg, VA 24061-0356
roclaus@vatech.edu
USA

K. L. Cooper
NanoSonic Inc.
1485 South Main Street
Blacksburg, VA 24060
USA

G. Decher
Institut Charles Sadron
6, rue Boussingault
F-67083 Strasbourg Cedex
decher@cerbere.u-strasbg.fr
France

E. Donath,
Max Planck Institute of Colloids and Interfaces
D-14424 Potsdam
edwin.donath@mpikg-golm.mpg.de
Germany

J. H. Fendler
Center for Advanced Materials Processing
Clarkson University
Potsdam, NY 13699-5814
fendler@clarkson.edu
USA

K. Glinel,
Unite de Physique et de Chimie des hauts polymères (POLY)
Université Catholique de Louvain
Place Croix du Sud, 1
B-1348 Louvain-la-Neuve
glinel@poly.ucl.ac.be
Belgium
P. T. Hammond
Department of Chemical Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139
hammond@mit.edu
USA

I. Ichinose
Topochemical Design Laboratory
Frontier Research System
Institute of Physical
and Chemical Research (RIKEN)
2-1 Hirosawa, Wako
Saitama
351-0198 Japan
izumi@postman.riken.go.jp

J. F. Joanny
Physicochimie Curie
Institut Curie Section Recherche
26, Rue d’Ulm
F-75248 Paris Cedex 05
joanny@ics.u-strasbg.fr
France

A. Jonas
Unite de Physique et de Chimie
des hauts polymères (POLY)
Université Catholique de Louvain
Place Croix du Sud, 1
B-1348 Louvain-la-Neuve
jonas@poly.ucl.ac.be
Belgium

V. Kabanov
Chemistry Department
Moscow State University
119899 Moscow
kabanov@libro.genebee.msu.su
Russia

R. Klitzing
Iwan-N.-Stranski-Institut (Sekr. ER 1)
TU Berlin
Straße des 17. Juni 112
D-10623 Berlin
klitzing@chem.zu-berlin.de
Germany

N. A. Kotov
Department of Chemistry
Oklahoma State University
Stillwater, OK 74078
kotov@okstate.edu
USA

T. Kunitake
Topochemical Design Laboratory
Frontier Research System
Institute of Physical
and Chemical Research (RIKEN)
2-1 Hirosawa, Wako
Saitama
351-0198 Japan
kunitake@ruby.ocn.ne.jp

K. Kuroiwa
Department of Chemistry
and Biochemistry
Graduate School of Engineering
Kyushu University
Japan

D. Kurth
Max Planck Institute of Colloids and Interfaces
D-14424 Potsdam
kurth@mpikg-golm.mpg.de
Germany

A. Laschewsky
Fraunhofer Institute
Geiselbergstraße 69
14476 Golm
andre.laschewsky@iap.fraunhofer.de
Germany

Y. Lvov
Institute for Micromanufacturing and
Chemistry Department
Lousiana Tech University
P.O. Box 10137
Ruston, LA 71272
ylvov@coes.latech.edu
USA
H. Möhwald,
Max Planck Institute of Colloids and Interfaces
D-14424 Potsdam
moehwald@mpikg-golm.mpg.de
Germany

H. Riegler,
Max Planck Institute of Colloids and Interfaces
D-14424 Potsdam
hans.riegler@mpikg-golm.mpg.de
Germany

M. F. Rubner
Department of Materials Science and Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139
rubner@mit.edu
USA

J. Schlenoff
Chemistry Department
Florida State University
Tallahassee, FL 32306-4390
schlen@chem.fsu.edu
USA

J. Shen,
Key Laboratory for Supramolecular Structure and Spectroscopy,
Department of Chemistry,
Jilin University
Changchun
130023 People’s Republic of China
sjc@mail.jlu.edu.cn

G. Sukhorukov
Max Planck Institute of Colloids and Interfaces
D-14424 Potsdam
Germany

B. Tieke
Institut für Physikalische Chemie
Universität zu Köln
Luxemburger Straße 116
D-50939 Köln
tieke@uni-koeln.de
Germany

P. Y. Vuillaume
Unite de Chimie des materiaux (CMAT)
Université Catholique de Louvain
Place Louis Pasteur 1
B-1348 Louvain-la-Neuve
vuillaume@chim.ucl.ac.be
Belgium

Y.-X. Wang,
Fiber & Electro-Optics Research Center
Virginia Tech
106 Plantation Road
Blacksburg, VA 24061-0356
USA

L. Zhang,
Fiber & Electro-Optics Research Center
Virginia Tech
106 Plantation Road
Blacksburg, VA 24061-0356
USA

X. Zhang
Key Laboratory for Supramolecular Structure and Spectroscopy,
Department of Chemistry,
Jilin University
Changchun
130023 People’s Republic of China
xi@mail.jlu.edu.cn