Fetal Electrocardiography
Published:

Controversies in the Description of Congenitally Malformed Hearts (with video)
R. H. Anderson

The Conduction System in the Mammalian Heart — An Anatomico-histological Study of the Atrioventricular Bundle and the Purkinje Fibers
S. Tawara; translated by K. Suma & M. Shimada

Fetal Electrocardiography
E. M. Symonds, D. Sahota & A. Chang

Forthcoming:

Pulmonary Circulation: Basic Mechanisms to Clinical Practice
J. M. B. Hughes & N. W. Morrell

Echocardiography in Congenital Heart Disease Made Simple
S. Y. Ho, A. N. Redington, M. L. Rigby & R. H. Anderson
Fetal Electrocardiography

E. Malcolm Symonds
University of Nottingham

Daljit Sahota
Allan Chang
The Chinese University of Hong Kong

Imperial College Press
Contents

Introduction ix

1. HISTORICAL DEVELOPMENT 1
 Early Observations 1
 Early Observations of the P & T Waves 4
 The P Wave and the QRS Complex 6
 Observations on the FECG Waveform in the 1970s with Appropriate Filtering 10
 New Methods of Signal Processing in the 1980s 12
 Clinical Trials and Observations in Recent Studies 14
 The QRS Complex 18
 Vectorcardiography 22
 Fetal Cardiac Arrhythmias 23
 Tachyarrhythmias 24
 The Use of Abdominal Electrodes 25
 The R–R’ Interval and Fetal Heart Rate 29

2. FETAL ADAPTATION 31
 What is Fetal Distress? 31
 Fetal Physiological Response to Hypoxia 33
 Intermediary metabolism 33
 Fetal blood gas and pH 34
 Cardiac response 35
 Cellular Effects of Hypoxia 36
 Oxygen radicals 36
 Membrane destruction 37
 DNA damage 38
 Cellular damage 38
 Adverse long-term outcome 38
 A Model for Fetal Distress 39
3. RESEARCH MODELS AND PREDICTION
 The Statistical Evaluation of Discrete Predictors 41
 The Statistical Evaluation of Continuous Predictors 43
 The Validation of Predictive Tests by Observational Studies 44
 The Validation of Predictive Tests by Clinical Trials 45
 The Inclusion of Both Intervention and Morbidity in a Clinical Trial of Predictive Tests 46
 The Hawthorne Effect 46
 Animal and Clinical Models of Study 47

4. THE ELECTRICAL SIGNAL, ITS ACQUISITION AND MEASUREMENT
 The Biophysics — How is the Fetal Electrocardiogram Produced? 49
 Acquisition of the Signal 53
 Obtaining the signal — Electrodes 53
 Non-penetrating electrodes 54
 Electrode characteristics 56
 Electrode—tissue interface 57
 Vectors 57
 Signal Detection and Enhancement 58
 Signal detection 58
 Enhancement 60
 Pitfalls of using time-coherent enhanced averaging 63
 Morphology and Time Measurement of the Enhanced Waveform 65

5. THE R-R’ INTERVAL AND THE CARDIOTOCOGRAPH
 Physiology of Fetal Heart Rate Regulation 69
 Regulation by the Autonomic Nervous System 70
 Regulation by Baroreceptors and Chemoreceptors 70
 Fetal Heart Rate Variability 71
 Short-Term Variability 71
 Long-Term Variability 72
 Fetal Behavioural States 73
 High Fetal Heart Rate Variability 73
Low Fetal Heart Rate Variability 73
Accelerations and Decelerations of the Fetal Heart Rate 74
 Accelerations 74
 Decelerations 75
 Early decelerations 75
 Late decelerations 76
 Variable decelerations 76
Interpretation of the CTG 77
Computerised Assessment of the RR Interval — New Definitions 78
 Baseline 79
 Baseline variability 79
 Accelerative episodes — accelerations 80
 Decelerative episodes — decelerations 80
Computerised Systems for the Interpretation of Antepartum Fetal Heart Rate 81
Computerised Systems for the Interpretation of Intrapartum Fetal Heart Rate 83
 Computerised estimation of baseline 83
 Computerised estimation of variability 84
 Computerised identification of decelerations 87

6. TIME INTERVALS AND MORPHOLOGY

OF THE FETAL ECG 89
Analysis of the FECG 90
Development of an Analyser of the FECG 90
The PR Interval and the PR/FHR Relationship 92
P Wave Morphology and Area 92
The PR/FHR Relationship 93
The Application of PR/FHR to Clinical Trials 98
Prospective Trials 99
The QRS Complex 102
The R/S Ratio and Fetal Vector Cardiography 102
The QT Interval and the ST Segment 103
The T/QRS Ratio 104

7. FETAL CARDIAC ARRHYTHMIAS 108
Disorders of Cardiac Rhythms in the Fetus 108
Extrasystoles 109
Supraventricular Extrasystoles 110
 Management 110
Escape Rhythms — The Bradycardias 111
Sinus Bradycardia 111
 Management 111
Blocked Atrial Premature Beats 112
Complete Heart Block 112
 Management 113
The Tachycardias 113
Supraventricular Tachycardias 113
 Management 114
Atrial Flutter and Atrial Fibrillation 115
 Management 116
Ventricular Tachycardia 116

8. INFORMATION INTERPRETATION AND TRANSFORMATION 117
The Transformation of Data 117
 Simple transformations 117
 Transformations based on theoretical assumptions 118
 Serial transformations 120
 Multivariate transformations 120
Neural networks 122
Organisation of the information 125
Object orientated structure of the data and algorithm 126
Presentation 129
 Display of normality and abnormality 130
 Vector display 130

9. CONCLUSIONS 132
 Monitoring Methods Currently in Use 132
 Problems with the Present Systems 135
 Has the Fetal ECG Analysis Enhanced the Specificity of Fetal Monitoring? 136
 The Way Forward 138
References 141
Introduction

There has been a number of excellent books published in recent years on the subject of fetal monitoring. Their primary function has been to examine the nature of the fetal heart rate and the physiology and pathophysiology of the regulation of the fetal heart beat and how this can be applied to the detection of fetal asphyxia and the prediction of adverse outcome for the fetus, either in terms of fetal death or brain damage. Over the last decade, there has been much debate and re-evaluation of the effectiveness of counting the fetal heart rate in achieving these objectives, although it must be pointed out that techniques of electronic monitoring were never actually introduced to prevent fetal damage but were introduced to prevent intrapartum fetal death. The initial historical studies produced very promising results in reducing intrapartum death rates as measured against the incidence of antepartum stillbirths. The Dublin randomised study of fetal heart rate monitoring (MacDonald et al., 1985) was conducted on a large number of normal subjects and failed to show any difference in perinatal mortality between those infants monitored electronically and those monitored by intermittent auscultation. As fetal death in such a group has a very low prevalence, the study was inadequate to actually prove that point even though the numbers involved in the study were, by conventional standards, large.

The more difficult issue relates to the prevalence of cerebral palsy and whether electronic monitoring has had any impact on this problem. The widely held view is that the prevalence of cerebral palsy has, if anything, increased, although recent analysis of Bristol data (Pharoah, 1996) shows that the prevalence of cerebral palsy has fallen in mature infants but has risen in low birth weight infants, suggesting that the increased survival of very low birth weight infants has carried its own price and that intensive intrapartum observation of the fetus may have achieved its objectives as far as the mature fetus is concerned.

The fetus, as with the adult of the species, survives in a buffered environment and, therefore, its biochemical response to hypoxia and asphyxia is linear only until the extreme limits of compensation are reached. This is
too late for intervention if the fetus is to be delivered in a healthy state. However, over-interpretation of abnormalities of the fetal heart rate has led to unnecessary intervention associated with high operative delivery rates.

Outcome measurements are further bedevilled by the knowledge that many infants who manifest cerebral palsy provide no evidence that the processes of parturition and fetal acidosis play any part in the pathology of the brain damage and where it must be concluded that either an episode of fetal asphyxia occurred before the onset of labour or that there was a genetic or infective problem that produced the abnormality.

This book is not about fetal monitoring although clearly it has implications for that subject. Over the past decade, the Departments of Obstetrics & Gynaecology at the University of Nottingham and the Chinese University of Hong Kong have collaborated on joint projects studying the nature of the fetal electrocardiogram waveform and intervals and its relationship to fetal health. The technical developments in Nottingham date back to the 1970s when the initial developments in signal acquisition and signal processing were produced in a collaboration between the Department of Obstetrics & Gynaecology and the Department of Electrical and Electronic Engineering.

The history of research on the fetal electrocardiogram dates back nearly a hundred years but progress has been intimately related to computer and chip technology. Unlike heart rate, the components of the ECG waveform are multiple and their interface is complex. The mass of information produced by detailed analysis of the ECG requires computer technology if the information is to be used in real time. Furthermore, the methods of analysis required to interpret the significance of the waveform pattern are numerous and complex. Understanding the fundamental physiology of electrical activity in the heart is a prerequisite for studying the subject of fetal electrocardiography. As we hope that this book will be a source of information and stimulation for both medical and engineering researchers in this field, we make no apologies for including basic descriptions of those subjects.

In assessing the relationship between the electrical activity in the fetal heart and in the conduction system, it is important to address the issues related to outcome and the biochemistry of fetal asphyxia. Increasingly, the
research community has become aware of the fact that the relationship between fetal acidosis and outcome is complex. It is clear that some infants will survive profound fetal acidosis without suffering damage to the brain stem or cortical damage or intraventricular haemorrhage. The specific effect of reduced cerebral blood flow and the damage inflicted by free-oxygen radicals may be as important as any absolute changes in pH. The ability of the fetal heart to survive biochemical insults is considerable and the changes in the heart may therefore be at some remove from damage suffered by the brain. In using parameters from the fetal ECG as a tool for assessment of the health of the fetus, we are adopting a relatively oblique but accessible pathway.

In the interpretation of the parameters of the FECG, it is important to remember that ischaemia in the fetal myocardium has an entirely different pathogenesis to the common forms of ischaemic heart disease in the adult. The lesions that produce ischaemic heart disease are generally focal and occur in an intact individual. The fetus usually has normal coronary vessels but lives in an environment where it is entirely dependent on the placenta. In effect, it is permanently attached to a large dialysis unit. This means that the biochemical changes that occur during chronic asphyxia are generally mediated by the placenta but its capacity for coping with the different features induced by chronic oxygen deprivation may not be consistent. For example, asphyxia in either the fetus or the adult will produce a shift of K^+ from the intracellular location into the extracellular and intravascular spaces. As the placenta faces into a maternal circulation where the acid–base and electrolyte environment may be normal, does the fetus lose potassium into the maternal circulation, and if so, does the fetus effectively manifest a hypokalaemic intracellular environment? Ischaemic changes in the fetal heart are diffuse and therefore the changes in the ECG differ in many aspects from those seen in the adult.

With some notable exception, most of the attempts to use the fetal ECG for recognition of biochemical changes have followed the same pathway as the interpretation of heart rate and the R–R interval but the ECG offers many different measurements and therefore does not offer the constraints imposed by using a single parameter. Yet, most of the work in this field —
certainly until the 1980s — has tended to simply take single parameters and attempt to reproduce the same profile of analysis that has been used for heart rate. It is clear that the changes in the ECG are often subtle and will only become gross in the agonal stages of fetal asphyxia and are therefore of no value in preventing fetal demise. Furthermore, it is apparent that in using a single lead system attached to the presenting part of the fetus, there are constraints in measuring change in the morphology of the ECG. These difficulties are further compounded by the fact that any change of the position of the electrode may change the shape of the waveform, particularly in relation to the ST segment and T-wave configuration.

However, considerable advances have been made in the computerisation of data and in the techniques for removing electrical noise and artefacts by the use of sliding averages. Digitised data can be used not only in the continuous measurement of individual parameters and time intervals but also in examining the interaction between variables to see if the sensitivity and accuracy of fetal monitoring can be enhanced. Are we approaching the analysis of this mass of information in the right way or are there better techniques that would allow “computer” recognition of abnormal states? The application of neural networks takes a step in this direction, but so far, it has not been found to enhance precision. The method also has the disadvantage of being impossible to trace how a particular decision is reached. Provided that the end result allowed more efficient interpretation of the ECG, the use of such a technique would be justifiable, but that has so far not proven to be the case.

Whilst the primary objectives of this book are to review the history and the current status of fetal electrocardiography, we would be remiss if we did not take the opportunity to speculate on possible future technical developments in this field, and also to consider further the question of suitable outcome measurements and analysis of the ECG in relation to those factors.