COMPUTATIONAL CHEMISTRY USING THE PC

Third Edition

DONALD W. ROGERS
Computational Chemistry Using the PC

Third Edition

Donald W. Rogers

WILEY-INTERSCIENCE
A John Wiley & Sons, Inc., Publication
Computational Chemistry Using the PC

Third Edition
Live joyfully with the wife whom thou lovest all the
days of the life of thy vanity, which He hath given
thee under the sun, all the days of thy vanity: for that
is thy portion in this life, and in thy labor which thou
takest under the sun.

Ecclesiastes 9:9

THIS BOOK IS DEDICATED TO KAY
Contents

Preface to the Third Edition xv
Preface to the Second Edition xvii
Preface to the First Edition xix

Chapter 1. Iterative Methods 1

Iterative Methods 1
An Iterative Algorithm 2
Blackbody Radiation 2
Radiation Density 3
Wien’s Law 4
The Planck Radiation Law 4

COMPUTER PROJECT 1-1 | Wien’s Law 5

COMPUTER PROJECT 1-2 | Roots of the Secular Determinant 6

The Newton–Raphson Method 7
Problems 9

Numerical Integration 9
Simpson’s Rule 10
Chapter 2. Applications of Matrix Algebra

Matrix Addition 31
Matrix Multiplication 33
Division of Matrices 34
Powers and Roots of Matrices 35
Matrix Polynomials 36
The Least Equation 37
Importance of Rank 38
Importance of the Least Equation 38
Special Matrices 39
The Transformation Matrix 41
Complex Matrices 42
What’s Going On Here? 42
Problems 44

Linear Nonhomogeneous Simultaneous Equations 45
Algorithms 47
Matrix Inversion and Diagonalization 51

Chapter 3. Curve Fitting

Information Loss 60
The Method of Least Squares 60
Chapter 5. Molecular Mechanics II: Applications 131

Coupling 131
Normal Coordinates 136
Normal Modes of Motion 136
An Introduction to Matrix Formalism for Two Masses 138
The Hessian Matrix 140
Why So Much Fuss About Coupling? 143
The Enthalpy of Formation 144
Enthalpy of Reaction 147

COMPUTER PROJECT 5-1 | The Enthalpy of Isomerization of cis- and trans-2-Butene 148

Enthalpy of Reaction at Temperatures $\neq 298$ K 150
Population Energy Increments 151
Torsional Modes of Motion 153

COMPUTER PROJECT 5-2 | The Heat of Hydrogenation of Ethylene 154

Pi Electron Calculations 155

COMPUTER PROJECT 5-3 | The Resonance Energy of Benzene 157

Strain Energy 158
False Minima 158
Dihedral Driver 160
Full Statistical Method 161
Entropy and Heat Capacity 162
Free Energy and Equilibrium 163

COMPUTER PROJECT 5-4 | More Complicated Systems 164

Problems 166

Chapter 6. Huckel Molecular Orbital Theory I: Eigenvalues 169

Exact Solutions of the Schroedinger Equation 170
Approximate Solutions 172
The Huckel Method 176
The Expectation Value of the Energy: The Variational Method 178

COMPUTER PROJECT 6-1 | Another Variational Treatment of the Hydrogen Atom 181
<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huckel Theory and the LCAO Approximation 183</td>
</tr>
<tr>
<td>Homogeneous Simultaneous Equations 185</td>
</tr>
<tr>
<td>The Secular Matrix 186</td>
</tr>
<tr>
<td>Finding Eigenvalues by Diagonalization 187</td>
</tr>
<tr>
<td>Rotation Matrices 188</td>
</tr>
<tr>
<td>Generalization 189</td>
</tr>
<tr>
<td>The Jacobi Method 191</td>
</tr>
<tr>
<td>Programs QMOBAS and TMOBAS 194</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPUTER PROJECT 6-2</th>
<th>Energy Levels (Eigenvalues) 195</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPUTER PROJECT 6-3</td>
<td>Huckel MO Calculations of Spectroscopic Transitions 197</td>
</tr>
</tbody>
</table>

Problems 198

Chapter 7. Huckel Molecular Orbital Theory II: Eigenvectors 201

Recapitulation and Generalization 201
The Matrix as Operator 207
The Huckel Coefficient Matrix 207
Chemical Application: Charge Density 211
Chemical Application: Dipole Moments 213
Chemical Application: Bond Orders 214
Chemical Application: Delocalization Energy 215
Chemical Application: The Free Valency Index 217
Chemical Application: Resonance (Stabilization) Energies 217

| LIBRARY PROJECT 7-1 | The History of Resonance and Aromaticity 219 |

Extended Huckel Theory—Wheland’s Method 219
Extended Huckel Theory—Hoffman’s EHT Method 221
The Programs 223

<table>
<thead>
<tr>
<th>COMPUTER PROJECT 7-1</th>
<th>Larger Molecules: Calculations using SHMO 225</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPUTER PROJECT 7-2</td>
<td>Dipole Moments 226</td>
</tr>
<tr>
<td>COMPUTER PROJECT 7-3</td>
<td>Conservation of Orbital Symmetry 227</td>
</tr>
<tr>
<td>COMPUTER PROJECT 7-4</td>
<td>Pyridine 228</td>
</tr>
</tbody>
</table>

Problems 229

Chapter 8. Self-Consistent Fields 231

Beyond Huckel Theory 231
Elements of the Secular Matrix 232
The Helium Atom 235
A Self-Consistent Field Variational Calculation of IP for the Helium Atom 236

COMPUTER PROJECT 8-1 | The SCF Energies of First Row Atoms and Ions 240

COMPUTER PROJECT 8-2 | A High-Level ab initio Calculation of SCF First IPs of the First Row Atoms 241

The STO-xG Basis Set 242
The Hydrogen Atom: An STO-1G “Basis Set” 243
Semiempirical Methods 248
PPP Self-Consistent Field Calculations 248
The PPP-SCF Method 249
Ethylene 252
Spinorbitals, Slater Determinants, and Configuration Interaction 255
The Programs 256

COMPUTER PROJECT 8-3 | SCF Calculations of Ultraviolet Spectral Peaks 256

COMPUTER PROJECT 8-4 | SCF Dipole Moments 258

Problems 259

Chapter 9. Semiempirical Calculations on Larger Molecules 263

The Hartree Equation 263
Exchange Symmetry 266
Electron Spin 267
Slater Determinants 269
The Hartree–Fock Equation 273
The Fock Equation 276
The Roothaan–Hall Equations 278
The Semiempirical Model and Its Approximations:
 MNDO, AM1, and PM3 279
The Programs 283

COMPUTER PROJECT 9-1 | Semiempirical Calculations on Small Molecules: HF to HI 284

COMPUTER PROJECT 9-2 | Vibration of the Nitrogen Molecule 284

Normal Coordinates 285
Dipole Moments 289

COMPUTER PROJECT 9-3 | Dipole Moments (Again) 289

Energies of Larger Molecules 289
Preface to the Third Edition

It is a truism (cliche?) that microcomputers have become more powerful on an almost exponential curve since their advent more than 30 years ago. Molecular orbital calculations that I ran on a supercomputer a decade ago now run on a fast desktop microcomputer available at a modest price in any popular electronics store or by mail order catalog. With this has come a comparable increase in software sophistication.

There is a splendid democratization implied by mass-market computers. One does not have to work at one of the world’s select universities or research institutes to do world class research. Your research equipment now consists of an off-the-shelf microcomputer and your imagination.

At the first edition of this book, in 1990, I made the extravagant claim that “a quite respectable academic program in chemical microcomputing can be started for about $1000 per student”. The degree of difficulty of the problems we solve has increased immeasurably since then but the price of starting a good teaching lab is probably about half of what it was. To equip a workstation for two students, one needs a microcomputer connected to the internet, a BASIC interpreter and a beginner’s bundle of freeware which should include the utility programs suggested with this book, a Huckel Molecular Orbital program, TINKER, MOPAC, and GAMESS.

There are 42 Computer Projects included in this text. Several of the Computer Projects connect with the research literature and lead to extensions suitable for undergraduate or MS thesis projects. All of the computer projects in this book have been successfully run by the author. Unfortunately, we still live in an era of system incompatibility. The instructor using these projects in a teaching laboratory is urged
to run them first to sort out any system specific difficulties. In this, the projects here are no different from any undergraduate experiment; it is a foolish instructor indeed who tries to teach from untested material.

The author wishes to acknowledge the unfailing help and constructive criticism of Frank Mc Lafferty, the computer tips of Nikita Matsunaga and Xeru Li. Some of the research which gave rise to Computer Projects in the latter half of the book were carried out under a grant of computer time from the National Science Foundation through the National Center for Supercomputing Applications both of which are gratefully acknowledged.

Donald W. Rogers
Greenwich Village, NY
July 2003
Preface to the Second Edition

A second edition always needs an excuse, particularly if it follows hard upon the first. I take the obvious one: a lot has happened in microcomputational chemistry in the last five years. Faster machines and better software have brought more than convenience; there are projects in this book that we simply could not do at the time of the first edition.

Along with the obligatory correction of errors in the first edition, this one has five new computer projects (two in high-level ab initio calculations), and 49 new problems, mostly advanced. Large parts of Chapters 9 and 10 have been rewritten, more detailed instructions are given in many of the computer projects, and several new illustrations have been added, or old ones have been redrawn for clarity. The BASIC programs on the diskette included here have been translated into ASCII code to improve portability, and each is written out at the end of the chapter in which it is introduced. Several illustrative input and output files for Huckel, self-consistent field, molecular mechanics, ab initio, and semiempirical procedures are also on the disk, along with an answer section for problems and computer projects.

One thing has not changed. By shopping among the software sources at the end of this book, and clipping popular computer magazine advertisements, the prudent instructor can still equip his or her lab at a starting investment of about $2000 per workstation of two students each.
Preface to the First Edition

This book is an introduction to computational chemistry, molecular mechanics, and molecular orbital calculations, using a personal microcomputer. No special computational skills are assumed of the reader aside from the ability to read and write a simple program in BASIC. No mathematical training beyond calculus is assumed. A few elements of matrix algebra are introduced in Chapter 3 and used throughout.

The treatment is at the upperclass undergraduate or beginning graduate level. Considerable introductory material and material on computational methods are given so as to make the book suitable for self-study by professionals outside the classroom. An effort has been made to avoid logical gaps so that the presentation can be understood without the aid of an instructor. Forty-six self-contained computer projects are included.

The book divides itself quite naturally into two parts: The first six chapters are on general scientific computing applications and the last seven chapters are devoted to molecular orbital calculations, molecular mechanics, and molecular graphics. The reader who wishes only a toolbox of computational methods will find it in the first part. Those skilled in numerical methods might read only the second. The book is intended, however, as an entity, with many connections between the two parts, showing how chapters on molecular orbital theory depend on computational techniques developed earlier.

Use of special or expensive microcomputers has been avoided. All programs presented have been run on a 8086-based machine with 640 K memory and a math coprocessor. A quite respectable academic program in chemical microcomputing can be started for about $1000 per student. The individual or school with more expensive hardware will find that the programs described here run faster and that
more visually pleasing graphics can be produced, but that the results and principles involved are the same. Gains in computing speed and convenience will be made as the technology advances. Even now, run times on an 80386-based machine approach those of a heavily used, time-shared mainframe.

Sources for all program packages used in the book are given in an appendix. All of the early programs (Chapters 1 through 7) were written by the author and are available on a single diskette included with the book. Programs HMO and SCF were adapted and modified by the author from programs in FORTRAN II by Greenwood (Computational Methods for Quantum Organic Chemistry, Wiley Interscience, New York, 1972). The more elaborate programs in Chapters 10 through 13 are available at moderate price from Quantum Chemistry Program Exchange, Serena Software, Cambridge Analytical Laboratories and other software sources [see Appendix].

I wish to thank Dr. A. Greenberg of Rutgers University, Dr. S. Topiol of Burlex Industries, and Dr. A. Zavitsas of Long Island University for reading the entire manuscript and offering many helpful comments and criticisms. I wish to acknowledge Long Island University for support of this work through a grant of released time and the National Science Foundation for microcomputers bought under grant #CSI 870827.

Several chapters in this book are based on articles that appeared in American Laboratory from 1981 to 1988. I wish to acknowledge my coauthors of these papers, F. J. McLafferty, W. Gratzer, and B. P. Angelis. I wish to thank the editors of American Laboratory, especially Brian Howard, for permission to quote extensively from those articles.