

IMPROVING METHODS TO ESTIMATE THE TRAFFIC CONGESTION IMPACTS OF URBAN PUBLIC TRANSPORT

Duy Quy Nguyen-Phuoc

BSc (Civil Eng.), MSc (Civil Eng.)

A thesis submitted for the degree of Doctor of Philosophy at Monash University in 2018

> Institute of Transport Studies Department of Civil Engineering Monash University

Copyright notice

© The author (2018).

I certify that I have made all reasonable efforts to secure copyright permissions for third-party content included in this thesis and have not knowingly added copyright content to my work without the owner's permission.

Abstract

Traffic congestion has been a major issue in many cities worldwide. It causes delay, energy waste and environmental pollution. Public transport is considered to be an efficient solution that can deal with traffic congestion. It provides an alternative transport mode for riders and reduces the number of car trips on the road network. Transport researchers have developed a number of approaches which aim to assess the benefits of public transport such as cost saving or pollution reduction. However, from a literature review the traffic congestion effects associated with public transport have been explored by only limited studies which adopted unrealistic assumptions and presented simplistic constructs. No systematic methods have been proposed to estimate these impacts. Given this deficiency in the literature, this thesis proposes that further research should be undertaken with the aim of developing a more precise approach for assessing the traffic congestion impacts of public transport.

To achieve the overall research aim, seven stages of work have been identified. The first stage involves the review of relevant literature on the traffic congestion effect of public transport. The second stage is to gain an in-depth understanding of mode shift from public transport when public transport is unavailable and to explore factors influencing mode shift. In the third stage, a transport network modelling is used to assess the network-wide congestion relief effect of urban public transport. The net congestion impacts of individual public transport modes (bus, tram and train) are explored in the fourth stage, fifth stage and sixth stage. In the final stage, the net traffic congestion effect of the entire public transport system is assessed by integrating both positive and negative effects of public transport.

The main methodology using to assess the congestion impacts associated with public transport is to contrast the level of congestion on the road network in two scenarios 'with public transport' and 'without public transport'. The Victorian Integrated Transport Model (VITM), a strategic transport modelling platform, provides the general assessment of congestion level of the road network in the scenario 'with public transport' but it cannot model correctly the negative impacts that public transport itself can have on vehicle traffic. In addition, VITM does not give detailed information about the level of congestion in the scenario 'without public transport'. In my research, this model is significantly improved to estimate the level of congestion in two scenarios 'with public transport' and 'without public transport'. The difference between these two levels of congestion is considered to be the traffic congestion effect of public transport. Hence, using this extended model, it is now possible to estimate the effects of public transport on traffic congestion.

The findings show that in the morning peak hours, Melbourne's public transport system contributes to reduce vehicle time travelled and total delay on the road network by around 48%. The public transport system also reduces the number of severely congested links by more than 60%. The congestion impact of public transport varied spatially across regions. The highest effect in relieving traffic congestion is in inner areas, traditionally the most congested part of the city.

The major contribution of this research is the development of a more comprehensive methodology that can be used to measure the traffic congestion effects associated with public transport. With the new method, traffic authorities can identify the effectiveness of public transport in relieving traffic congestion on a particular corridor or an area. Based on the results, they can decide whether a public transport system needs to be improved. In addition, understanding the congestion relief impact of public transport can provide guidance both from an operational and a strategic point of view. From the operational perspective, routes and corridors facing congestion can be targeted for attention to seek a desired level of congestion relief. From a strategic perspective, appropriate public transport policies can be developed to encourage desired development in designated locations and again seek desired levels of congestion relief.

In summary, the traffic congestion effects associated with urban public transport have been examined through a qualitative, quantitative, microsimulation and macrosimulation modelling approach detailed in this thesis. Results from the analyses indicate that the net effect of the entire Melbourne's public transport system on traffic congestion is significant and positive.

Declaration

This thesis contains no material which has been accepted for the award of any other degree or diploma at any university or equivalent institution and that, to the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference is made in the text of the thesis.

Publications during enrolment

The following publications have arisen from the research reported in this thesis

Refereed Journal Papers

- Nguyen-Phuoc, D.Q., Currie, G., De Gruyter, C. & Young, W., 2017, 'Local and systemwide traffic effects of urban road-rail level crossings: A new estimation technique', *Journal* of *Transport Geography*. Vol. 60, pp. 89-97. SSCI, Q1, IF=2.68
- Nguyen-Phuoc, D.Q., Currie, G., De Gruyter, C. & Young, W., 2017, 'Net Impacts of Streetcar Operations on Traffic Congestion in Melbourne, Australia', *Transportation Research Record: Journal of the Transportation Research Board*. Vol. 2648, pp. 1-9. SCI, Q2, IF=0.60
- Nguyen-Phuoc, D.Q., Currie, G., De Gruyter, C. & Young, W., 2018, 'Understanding public transport user behaviour adjustment if public transport ceases - A qualitative study', *Transport Research Part F*. SSCI, Q2, IF=1.83
- Nguyen-Phuoc, D.Q., Currie, G., De Gruyter, C. & Young, W., 2018, 'Transit user reactions to major service withdrawal – A behavioural study'. *Transport Policy*. SSCI, Q2, IF=2.27
- Nguyen-Phuoc, D.Q., Currie, G., De Gruyter, C. & Young, W., 2018, 'The impact of public transport strike on travel behaviour and traffic congestion', *International Journal of Sustainable Transportation*. DOI: 10.1080/15568318.2017.1419322. SSCI, Q2, IF=1.96

Journal Papers in Under Review

- Nguyen-Phuoc, D.Q., Currie, G., De Gruyter, C. & Young, W., 2017, 'Traffic congestion relief consequent on public transport: The state of the art', *Transport Review*. (Pass 1st round, submitted the revision) SSCI, Q1, IF=3.33
- Nguyen-Phuoc, D.Q., Currie, G., De Gruyter, C., Kim, I. & Young, W., 2017, 'Net impact of bus operations on traffic congestion in Melbourne', *Transport Research Part A*. (Pass 1st round with minor revision, submitted the revision) SCI, Q1, IF=2.67
- 3. Nguyen-Phuoc, D.Q., Currie, G., De Gruyter, C. & Young, W., 2017, 'Congestion relief and public transport: An enhanced method using disaggregate mode shift evidence', *Case Studies on Transport Policy. (Under Review)*
- 4. Nguyen-Phuoc, D.Q., Currie, G., De Gruyter, C. & Young, W., 2017, 'Quantifying the net traffic congestion effect of urban public transport Including both negative and positive effects', *Public Transport. (Under Review)*

Peer-Reviewed Conference Papers

1. Nguyen-Phuoc, D.Q., Currie, G., De Gruyter, C. & Young, W., 2018, 'Quantifying the net traffic congestion effect of urban public transport – Including both negative and positive effects', Transportation Research Board (TRB) 97th Annual Meeting, Washington, D.C., United States.

ERA Ranking – A, ERA Conference ID – 44128

- Nguyen-Phuoc, D.Q., Currie, G., De Gruyter, C. & Young, W., 2017, 'Estimating the net traffic congestion impact associated with urban public transport – A Melbourne, Australia Case Study', 39th Australasian Transport Research Forum (ATRF), Auckland, New Zealand. ERA Ranking – A, ERA Conference ID – 42260
- Nguyen-Phuoc, D.Q., Currie, G., De Gruyter, C. & Young, W., 2017, 'Transit user reactions to major service withdrawal - A behavioural study', Transportation Research Board (TRB) 96th Annual Meeting, Washington, D.C., United States. ERA Ranking – A, ERA Conference ID – 44128
- Nguyen-Phuoc, D.Q., Currie, G., De Gruyter, C. & Young, W., 2017, 'Exploring the impacts of public transport strikes on travel behaviour and traffic congestion', Transportation Research Board (TRB) 96th Annual Meeting, Washington, D.C., United States. ERA Ranking – A, ERA Conference ID – 44128
- Nguyen-Phuoc, D.Q., Currie, G., De Gruyter, C. & Young, W., 2017, 'Net impacts of street car operations on traffic congestion in Melbourne', Transportation Research Board (TRB) 96th Annual Meeting, Washington, D.C., United States. ERA Ranking – A, ERA Conference ID – 44128
- Nguyen-Phuoc, D.Q., Currie, G., De Gruyter, C. & Young, W., 2016, 'Modelling the direct impact of tram operations on traffic', 23rd World Congress on Intelligent Transport System (ITS), Melbourne, Australia.
- Nguyen-Phuoc, D.Q., Currie, C. & Young, W., 2016, 'Estimating net traffic congestion relief associated with public transport - preliminary results', 14th World Conference on Transport Research (WCTR), Shanghai, China. ERA Ranking – A, ERA Conference ID – 44255
- Nguyen-Phuoc, D.Q., Currie, G., De Gruyter, C. & Young, W., 2016, 'Understanding public transport user behavior adjustment if public transport ceases - A qualitative study', 38th Australasian Transport Research Forum (ATRF), Melbourne, Australia. ERA Ranking – A, ERA Conference ID – 42260
- Nguyen-Phuoc, D.Q., Currie, G., De Gruyter, C. & Young, W., 2016, 'Modelling the Net Traffic Congestion Relief Impact of Street Car Networks – A Melbourne, Australia Case Study', 38th Australasian Transport Research Forum (ATRF), Melbourne, Australia. ERA Ranking – A, ERA Conference ID – 42260
- Nguyen-Phuoc, D.Q., Currie, C. & Young, W., 2015, 'New method for evaluating public transport congestion relief', Conference of Australian Institutes of Transport Research (CAITR), 33rd. Year 2015.
 ERA Ranking – C, ERA Conference ID – 42633
- Nguyen-Phuoc, D.Q., Currie, C. & Young, W., 2015, 'Public transport congestion relief measurement-a new framework and its impacts', 37th Australasian Transport Research Forum (ATRF), Sydney, New South Wales, Australia. ERA Ranking – A, ERA Conference ID – 42260

Thesis including published works General Declaration

I hereby declare that this thesis contains no material which has been accepted for the award of any other degree or diploma at any university or equivalent institution and that, to the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference is made in the text of the thesis.

This thesis includes four original papers published in peer reviewed journals and four original papers submitted to peer reviewed journals. The core theme of the thesis is to develop enhanced methods for assessing the net short-term traffic congestion impact associated with the urban public transport system in Melbourne, Australia. The ideas, development and writing up of all the papers in the thesis were the principal responsibility of myself, the candidate, working within the Department of Civil Engineering under the supervision of Professor Graham Currie, Professor William Young and Dr Chris De Gruyter. The inclusion of co-authors reflects the fact that the work came from active collaboration between researchers and acknowledges input into team-based research.

Thesis chapter	Paper	Publication title	Publication status*	Nature and extent (%) of student's contribution
2	1	Traffic congestion relief consequent on public transport: The state of the art	Returned for revision	70%
4	2	Understanding public transport user behavior adjustment if public transport ceases - A qualitative study	Published	70%
4	3	Transit user reactions to major service withdrawal – A behavioural study	Published	70%
5	4	Congestion relief and public transport: An enhanced method using disaggregate mode shift evidence	Under review	70%
6	5	Net impact of bus operations on traffic congestion in Melbourne	Returned for revision	70%
7	6	Net traffic congestion impacts of street car operations in Melbourne, Australia	Published	70%
8	7	Local and system-wide traffic effects of urban road-rail level crossings: A new estimation technique	Published	70%
9	8	Quantifying the net traffic congestion effect of urban public transport – Including both negative and positive effects	Under review	70%

In the case of Chapter 2 to Chapter 9 my contribution to the work involved the following:

* e.g. 'published'/ 'in press'/ 'accepted'/ 'returned for revision'

I have not renumbered sections of submitted or published papers in order to generate a consistent presentation within the thesis.

Student signature:

Date:

The undersigned hereby certify that the above declaration correctly reflects the nature and extent of the student and co-authors' contributions to this work. In instances where I am not the responsible author I have consulted with the responsible author to agree on the respective contributions of the authors

Main Supervisor signature:

Date:

Acknowledgements

This thesis is the result of a long journey that would not be completed without the support from a number of people. Firstly, I would like to express my sincere gratitude to my supervisors, Professor Graham Currie, Professor William Young and Dr Chris De Gruyter for both their excellent guidance and valuable advice. Their motivation, patience, enthusiasm and immense knowledge made me feel more confident and motivated on my way. From a student who did not know much about research and publication, they have assisted me in developing my skills as an independent researcher. I feel so lucky to be a student supervised by such talented individuals. I would like to thank Dr Inhi Kim for his assistance in dealing with VISSIM. He has shown me many skills which save me a lot of time.

Thank you all PhD students in the transport group who always remind me to never take things too serious and made my journey more enjoyable. I would also like to express my thanks to Jenny Manson, our Research and Postdoc manager for her support for almost all administrative matters.

My sincere thanks to Craig Somerville and Neville Wood from VicRoads for their assistance in accessing a transport network model. Dr Henry Le from AECOM is also acknowledged for his brilliant assistance in dealing with my issues that I faced in the transport model.

Most importantly, I would like to thank my wife Diep Su who always beside me when I feel stressed with my research. She was also a patient audience who listened to every presentation I practiced. Although she has also been a PhD student in Swinburne University, she had spent much time for taking care our small family, preparing my lunch and my dinner every day during my PhD journey. Special thanks to Cherry, my lovely daughter, whose face made me happy especially when my feeling was going down. I would also like to thank my parents for their distance encouragement that helped me deal with challenges and enjoy my life in Australia.

Table of Contents

Chapter 1: INTRODUCTION	1
1.1 Introduction	1
1.2 Background	1
1.2.1 Traffic Congestion	1
1.2.2 Impact of Public Transport on Traffic Congestion	2
1.2.3 Measures of Congestion Impacts Associated with Public Transport	5
1.3 Research Aim and Objectives	6
1.4 Contribution and Implication	6
1.5 Scope of the Study	7
1.6 Outline of Thesis Structure	7
Chapter 2: LITERATURE REVIEW	.12
2.1 Introduction	.12
2.2 Definitions of Traffic Congestion	.13
2.3 Measures of Traffic Congestion	.15
2.3.1 Congestion Indicators and Metrics	.15
2.3.2 Congestion Thresholds	.16
2.4 Benefits of Public Transport	.18
2.5 Impacts of Public Transport on Traffic Congestion	. 19
2.5.1 Impact of Public Transport on reducing Traffic Congestion	.19
2.5.2 Impact of Public Transport on creating Traffic Congestion	.25
2.6 Knowledge Gaps	.31
2.7 Summary	.31
Chapter 3: RESEARCH METHODOLOGY	.35
3.1 Introduction	.35
3.2 Research Objectives	.36
3.3 Outline of the Proposed Methodology	.36
3.4 Behavioural Modelling	.39
3.4.1 The Qualitative Approach (C1)	.39
3.4.2 The Quantitative Approach (C2)	.41
3.4.3 Disaggregate Approach (C3)	.43
3.5 Congestion Modelling	.43
3.5.1 Modelling the Congestion Relief Impact of the Entire Public Transport System (

3.5.2 Modelling the Net Impact of Bus Operations on Traffic Congestion (C5)	45
3.5.3 Modelling the Net Impact of Tram Operations on Traffic Congestion (C6)	46
3.5.4 Modelling the Net Impact of Train Operations on Traffic Congestion (C7)	47
3.5.5 Integrated Modelling (C8)	49
3.6 Summary	49
Chapter 4: BEHAVIOURAL MODELLING	51
4.1 Introduction	51
4.2 Research Methodology	52
4.2.1 Qualitative Approach	53
4.2.2 Quantitative Approach	55
4.3 Results	57
4.3.1 Qualitative Results	57
4.3.2 Quantitative Results	65
4.4 Discussion	75
4.5 Conclusions	80
Chapter 5: CONGESTION RELIEF MODELLING	82
5.1 Introduction	82
5.2 Research Context	83
5.2.1 Melbourne and its Public Transport System	83
5.2.2 Victorian Integrated Survey of Travel and Activity (VISTA)	
5.3 Research Methodology	85
5.3.1 Predicting the Share of Mode Shift from Public Transport to Car	86
5.3.2 Modelling Traffic Congestion Relief Impact associated with Public Transport.	87
5.4 Results	88
5.4.1 Mode Shift to Car associated with Public Transport Removal	88
5.4.2 Traffic Congestion Relief associated with Public Transport	95
5.5 Discussion	96
5.6 Conclusions	98
Chapter 6: BUS IMPACT MODELLING	.100
6.1 Introduction	.100
6.2 Research Context	.101
6.2.1 Melbourne's Bus Network	.101
6.2.2 Spatial Unit of Analysis	.101
6.3 Research Methodology	.102
6.3.1 Primary Survey for Estimating the Mode Shift from Bus to Car	.102

6.3.2 Secondary Data Sources Relating to Melbourne's Bus Operations	103
6.3.3 Method for Modelling the Net Impact of Buses on Traffic Congestion	104
6.4 Results	109
6.4.1 Mode Shift from Bus to Car	110
6.4.2 Microsimulation Results	110
6.4.3 Macro-modelling Results	111
6.5 Discussion	113
6.6 Conclusions	114
Chapter 7: TRAM IMPACT MODELLING	116
7.1 Introduction	116
7.2 Net Traffic Congestion Impacts of Streetcar Operations in Melbourne, Australia (A	· /
7.3 Discussion	127
7.4 Conclusions	128
Chapter 8: TRAIN IMPACT MODELLING	130
8.1 Introduction	
8.2 Research Context	131
8.2.1 Melbourne's Heavy Rail System	
8.2.2 Melbourne's Level Crossings	
8.3 Research Methodology	
8.3.1 Mode Shift from Train to Car if Train is not available	
8.3.2 Negative Effects of Train Operations on Generating Traffic Congestion	132
8.3.3 Net Traffic Congestion Effect of Train Operations	142
8.4 Results	143
8.5 Discussion	145
8.6 Conclusions	146
Chapter 9: INTEGRATED MODELLING	148
9.1 Introduction	
9.2 Research Methodology	149
9.2.1 Prediction of the Share of Mode Shift from Public Transport to Car	
9.2.2 Modelling of the Impact of Public Transport Operations on Generating Congestion – Microsimulation Approach	Traffic
9.2.3 Modelling of the Net Traffic Congestion Impact associated with Public Tran Macrosimulation Approach	*
9.3 Results	152
9.3.1 Mode Shift from Public Transport to Car	153

9.3.2 Negative Impact of Public Transport Operations on Traffic Congestion	154
9.3.3 Net Impact of Public Transport on Traffic Congestion	156
9.4 Discussion	160
9.5 Conclusions	161
Chapter 10: CONCLUSIONS	164
10.1 Introduction	164
10.2 Contributions to New Knowledge	164
10.3 Summary of Key Findings	166
10.4 Implications	168
10.5 Critique	169
10.6 Future Research Directions	171
10.7 Final Conclusions	171
APPENDIX	173
REFERENCES	185

List of Figures

Figure 1.1 Structure of the thesis	10
Figure 3.1 Research framework	
Figure 3.2 Schematic diagram of a traditional four step transport model	44
Figure 4.1 Conceptual model of mode shift to car among public transport users if pu	blic transport
ceases in the short-term	
Figure 5.1 Local Government Areas in Melbourne	
Figure 5.2 Process of estimating the level of congestion with traffic assignment in	two scenarios
Figure 5.3 Distribution of public transport trip origins among respondents	
Figure 5.4 Distribution of characteristics for each LGA in Melbourne	
Figure 5.5 Spatial distribution of the share of mode shift to car for LGAs in Melbour	rne94
Figure 6.1 Melbourne's bus network	
Figure 6.2 Modelled road links with: (a) curbside bus stop and (b) bus bay	
Figure 6.3 Default vs. calibrated traffic speed distribution in VISSIM	
Figure 6.4 Comparison of observed (field) data and simulated VISSIM output	
Figure 6.5 Process of estimating travel demand in the two scenarios	
Figure 8.1 Process of estimating the travel demand with traffic assignment in two sc	enarios143
Figure 8.2 Distribution of congested road links in Melbourne	144
Figure 9.1 Process of estimating the travel demand with traffic assignment in two sc	enarios152
Figure 9.2 Spatial distribution of the share of mode shift to car for LGAs in Melbour	rne154
Figure 9.3 Spatial distribution of congested links in two scenarios: (a) with public	transport and
(b) without public transport	

List of Tables

Table 1.1 List of papers related to the thesis	9
Table 2.1 Definitions of traffic congestion	14
Table 2.2 Overview of congestion indicators and their metrics	16
Table 2.3 Congestion threshold (SEMCOG, 2011)	17
Table 2.4 Summary of public transport benefits	19
Table 2.5 Evidence of mode shift when public transport was unavailable	21
Table 2.6 Factors affecting mode shift when public transport was unavailable	22
Table 2.7 Traffic congestion relief associated with public transport	24
Table 2.8 Traffic delay caused by bus stopping operations	
Table 2.9 Existing knowledge gaps that motivate the current research	
Table 3.1 Relationships among research gaps, opportunities, objectives, component	nts and thesis
chapters	
Table 4.1 Research gaps, opportunities and objective associated with research comp	onent 1 and 2
	51
Table 4.2 Semi-structured interview questions	54
Table 4.3 Profile of respondents (n=30)	
Table 4.4 Comparison of gender, age ratios between sample and public transport	population in
census	
Table 4.5 Characteristics of respondents	68
Table 4.6 Behavioural reaction distribution and travel distance	68
Table 4.7 Respondent characteristics by behavioural reactions	69
Table 4.8 Multinominal Logit Model specification	70
Table 4.9 Multinominal Logit Model: Marginal effects on behavioural responses	72
Table 4.10 Importance of reasons for shifting to other transport modes	73
Table 4.11 Importance of reasons for not shifting to other transport modes	74
Table 4.12 Behavioural response of public transport users when each public transport	t mode ceases
in the short term	75
Table 5.1 Research objective, gaps and opportunities associated with research comp	ponents 3 and
4	
Table 5.2 Public transport mode distribution of users in Melbourne	

Table 5.3 Mode shift to car and characteristic of Melbourne's LGAs	90
Table 5.4 Results for regression model examining the share of mode shift of public transport	
Table 5.5 Distribution of car mode shift for Melbourne's LGAs.	
Table 5.6 Congestion relief impact of public transport on Melbourne's road network	
Table 5.7 Congestion relief impact of public transport on Melbourne's road network in	inner,
middle and outer areas	96
Table 6.1 Research gap, opportunity and objective associated with research component 5	100
Table 6.2 Parameters set in the VISSIM microsimulation	106
Table 6.3 Parameter values used in microsimulation	107
Table 6.4 Mode shift of bus users when bus services cease	110
Table 6.5 Functions for estimating travel time increases caused by bus stop operations	111
Table 6.6 Net impact of bus operations on Melbourne's road network	112
Table 6.7 Net impact of bus operations on Melbourne's road network in inner, middle and	outer
areas	113
Table 7.1 Research gap, opportunity and objective associated with research component 6	116
Table 8.1 Research gap, opportunity and objective associated with research component 7	130
Table 8.2 Net congestion impact of trains on Melbourne's road network in AM peak hours (7	7h-9h)
	145
Table 9.1 Research gap, opportunity and objective associated with research component 8	148
Table 9.2 Distribution share of car mode shift for Melbourne's LGAs	153
Table 9.3 Functions for estimating travel time increases caused by bus stop operations	155
Table 9.4 The relationship between traffic volume and the percentage change in travel time	e on a
road link with a non-exclusive tram right-of-way	155
Table 9.5 The relationship between traffic volume and the percentage change in travel time	e as a
result of at-grade rail crossings	156
Table 9.6 Net congestion impact of public transport on Melbourne's road network in AM	l peak
hours (7h-9h)	157
Table 9.7 Compare net impact and relief impact of public transport on traffic congestion	157
Table 9.8 Net congestion impact of the entire public transport system on Melbourne's road ne	
in inner, middle and outer areas	160