A PLM based approach for supporting collaboration and knowledge management in the medical domain: Application to the treatment process requiring prosthesis implantation
ACKNOWLEDGEMENTS

It would not have been possible to write this PhD thesis without the help and support of the kind people around me. It is a true pleasure for me to thank the people who have made this thesis possible.

First of all, I would like to thank my supervisor, prof. Alain Bernard, for accepting me as his PhD student during 4 years at Ecole Centrale de Nantes. Although he is very busy, he still tried to push and accelerate my work go further on the right way. His advices and supports really contributed to the completion of my thesis.

I would like to say a big thank you to Dr. Farouk Belkadi, for the acceptance to be my co-supervisor with efficiency, patience and enthusiasm. During my research period, he has spent a lot of time on my research. We have had many meetings together to discuss, adjust and find appropriate directions. I am sure that I will not get results today without his help.

I also thank members of the thesis supervision committee: prof. Abdelaziz Bouras and prof. Lionel Roucoules for their constructive advices, their relevant remarks to follow my thesis work.

Many thanks to prof. Vincent Cheutet and prof. Benoit Eynard who have been kind to be the reporters of this manuscript. Thank you also to prof. Nada Matta and Dr. Marianne Allanic who accepted to be members of my jury.

I would like to thank all members of laboratory LS2N, who have accompanied with me during a long four years of working and studying here. A special thanks to secretaries Virginie Dupont, Emily Thureau, Patricia Briere, Denis Creusot, Mael Villeneuve who always help and give advices concerning all informatic and administrative issues.

I also thank my colleagues and former colleagues at LS2N for their help and support: Ravi, Yicha, Elaheh, Anis, Benjamin, Matthieu, Islem, Yacine, Zakaria, Chris, Emilio and Xinwei.

I would like to express my sincere appreciation to the financial support from Vietnamese Government. This support enabled myself to do extensive research abroad. My thesis would have never been possible without this budget.
I would like to thank prof. Cung Le and prof. Frédéric Vignat who spent so much time to find my thesis supervisor. This is one of the most important steps at the beginning of this research.

Finally, I also would like to thank my family: my parents, parents-in-law, two younger brothers, two younger sisters-in-law, my wife and my son for all their love and encouragement. They accompanied me during my long studies.

—Thanh Nghi NGO—

Ecole Centrale de Nantes

July 1st, 2018
Contents

Main Introduction .. 8
Introduction générale .. 12

Chapter 1 Research context and related problematics ... 16
 1.1 Introduction to medical domain requiring prosthesis .. 17
 1.2 Diversity of medical data ... 20
 1.2.1 Introduction to medical imaging .. 21
 1.2.2 Data acquisition methods ... 22
 1.2.3 Medical scan data ... 24
 1.2.4 Diversity of data related to variety of prosthesis ... 24
 1.3 Data exchange and collaboration issues .. 25
 1.4 Synthesis and problematics of medical treatment requiring prosthesis 29

Chapter 2 Literature survey on PLM and KM approaches .. 31
 2.1 Introduction ... 32
 2.2 The concept of knowledge in enterprise .. 33
 2.2.1 Definitions of data, information and knowledge ... 33
 2.2.2 Main pillars of knowledge management in modern enterprises 35
 2.3 Knowledge representation and sharing ... 37
 2.3.1 Knowledge representation languages and tools ... 39
 2.3.2 Ontology as a support for knowledge classification 41
 2.4 Knowledge modeling frameworks .. 45
 2.5 Product lifecycle management approach .. 50
 2.5.1 Introduction to product lifecycle .. 50
 2.5.2 Product lifecycle management approach ... 51
 2.5.3 PLM functions .. 54
 2.6 PLM applications .. 57
 2.6.1 Applications in industrial domain .. 57
 2.6.2 Applications in medical domain .. 59
 2.7 Synthesis and research questions .. 63
Chapter 3 A conceptual approach for connecting medical and engineering processes ..66

3.1 Introduction and research method ..67

3.2 Process modeling framework for medical sector69

3.3 Lifecycles Analysis Framework ...74

3.3.1 Prosthesis and disease Lifecycle ...75

3.3.2 The five pillar analysis model of lifecycle stages connections analysis79

3.4 Ontology-based modeling of the target medical domain83

3.5 Conclusion ...91

Chapter 4 Implementation of the proposed framework in AUDROS PLM tool ..93

4.1 Introduction ..94

4.2 Implementation strategy ..95

4.2.1 Global architecture within AUDROS tool95

4.2.2 Implementation scenario and related PLM functionalities96

4.3 Implementation of main use cases in AUDROS100

4.3.1 Prosthesis project management with the Flowboard module101

4.3.2 Scenario of disease knowledge update102

4.3.3 Scenario of functional requirement creation and update105

4.3.4 Scenario of prosthesis design ..108

4.4 Administration issues: Construct the workflows111

4.4.1 Medical data workflow ..112

4.4.2 Disease workflow ..113

4.4.3 Requirement workflow ...113

4.4.4 Prosthesis workflow ..114

4.5 Conclusion ...114

Final Conclusion and Future Perspectives ...116

Scientific Valorization ...119

REFERENCES ...120

Appendix A AUDROS PLM TOOL ..132

A.1 Main commercial PLM tools ...132
A.2 AUDROS PLM tool ...133
 A.2.1 ModelShape..133
 A.2.2 View Designer...134
 A.2.3 SE Manager..134
 A.2.4 AWS ..135
 A.2.5 AUDROS Addons..135
 A.2.6 AWS creation ..136
 A.2.7 AUDROS Applet ..136
LIST OF FIGURES

Figure 0.1 - Organization of the manuscript ..11
Figure 1.1 - Domain Reference Model for Hospitals (Ziekenhuis et al., 2012)17
Figure 1.2 - The treatment process requiring prosthesis ..19
Figure 1.3 - Variety of models in the realization of prosthesis (Zdravković et al., 2012a)21
Figure 1.4 - CT Scan machine ...23
Figure 1.5 - IT structure for medical treatment process requiring prosthesis (Zdravković et al., 2012a) ...26
Figure 2.1 - Hierarchy of data, information and knowledge (Chaffey and White, 2010) ...34
Figure 2.2 - Interdisciplinary constraints concept (Kleiner et al., 2003)38
Figure 2.3 - An inheritance-style semantic network (Davis et al., 1993)39
Figure 2.4 - Example of conceptual graph (Sowa, 1992) ...40
Figure 2.5 - An example of ontology (Nadoveza and Kiritsis, 2014)43
Figure 2.6 - User interface of Protégé tool ..45
Figure 2.7 - UML class diagram of the FBS-PPRE model (Labrousse et al., 2004)46
Figure 2.8 - PPR meta-model (Le Duigou et al., 2009) ..47
Figure 2.9 - Top layers ontology in Bio-Imaging (Pham et al., 2016)49
Figure 2.10 - Product lifecycle phases (Terzi et al., 2010) ...51
Figure 2.11 - Fundamental elements of PLM (Terzi et al., 2010)52
Figure 2.12 - Basic components of the PLM approach (Abramovici, 2007)53
Figure 2.13 - PLM and business approach (Le Duigou et al., 2011)54
Figure 2.14 - Change management in PLM ...55
Figure 2.15 - PLM functions in each phase of the product lifecycle (Stark, 2015)56
Figure 2.16 - PLM framework focusing on supplier integration (Tang and Qian, 2008) ..57
Figure 2.17 - Management of BMI study in Teamcenter (Allanic et al., 2014)59
Figure 2.18 - BMI-LM data model schema (Allanic et al., 2014)60
Figure 2.19 - KM-PLM based tool supporting information queries (Pham et al., 2015) ... 61
Figure 2.20 - Collaborative platform in pharmaceutical processes (Jadhav, 2011) 61
Figure 2.21 - Quality System Inspection Techniques (QSIT) Pillars within medical PLM (Oracle Medical PLM) .. 62
Figure 3.1 – The PLM as a hub connecting disease and prosthesis data 68
Figure 3.2 - General diagram of the treatment process ... 70
Figure 3.3 - Patient data analysis process ... 71
Figure 3.4 - Prosthesis realization process ... 72
Figure 3.5 - Surgery preparation process ... 72
Figure 3.6 - Treatment achievement process.. 73
Figure 3.7 - Two lifecycles in the treatment process requiring prosthesis 75
Figure 3.8 - Three possible cases of prosthesis after recovery process 76
Figure 3.9 - Linking between disease lifecycle and prosthesis lifecycle 78
Figure 3.10 - Main concepts in the treatment process ... 79
Figure 3.11 – Description of Link 1 .. 80
Figure 3.12 - Linking between disease checking and requirement analysis stage ... 81
Figure 3.13 - Linking between treatment definition and requirement analysis stage .. 81
Figure 3.14 - Linking between treatment realization and prosthesis design stage 82
Figure 3.15 - Linking between treatment realization and prosthesis design stage 82
Figure 3.16 - Linking between Usage and Health problem stages 83
Figure 3.17 - Knowledge repository concept .. 84
Figure 3.18 - Global semantic model for the treatment process 85
Figure 3.19 – Ontology construction process .. 86
Figure 3.20 - Flow taxonomy .. 87
Figure 3.21 - Patient pathology classification .. 88
Figure 3.22 – Prosthesis taxonomy .. 88
Figure 3.23 - Requirement taxonomy ... 89
Figure 3.24 - Process taxonomy ... 90
Figure 3.25 - Tool taxonomy .. 90
Figure 3.26 - Stakeholder taxonomy ...91
Figure 4.1 – Implementation strategy within the AUDROS PLM tool..............96
Figure 4.2 - Use case diagram ...100
Figure 4.3 – Creation of the project prosthesis ...102
Figure 4.4 - Scenario of disease knowledge update ...103
Figure 4.5 - Main interface of PLM object “DISEASE”103
Figure 4.6 - List of symptoms ..103
Figure 4.7 - Identify pathology of patient from symptoms.104
Figure 4.8 - Patient disease defined with pathology ...104
Figure 4.9 - Notify results to surgeon ...104
Figure 4.10 - Surgeon receives the notification from medical doctor105
Figure 4.11 - Scenario of functional requirement creation106
Figure 4.12 - Main interface of PLM object “REQUIREMENT”106
Figure 4.13 - Identify prosthesis type from descriptions106
Figure 4.14 - Descriptions of prosthesis types ...107
Figure 4.15 - Requirement defined with type of prosthesis107
Figure 4.16 - Functional requirement attachment ..107
Figure 4.17 - Verify and send notification to prosthetist108
Figure 4.18 - Scenario of prosthesis design ..109
Figure 4.19 - Main interface of PLM object “PROSTHESIS”109
Figure 4.20 - 3D design drawing attachment ..110
Figure 4.21 - Prosthesis CAD model validation ..110
Figure 4.22 - Notify the completion to producer ..110
Figure 4.23 - Roles of the medical doctor in the system111
Figure 4.24 - Workflow of medical data ..112
Figure 4.25 - Workflow of disease ...113
Figure 4.26 - Workflow of requirement ..113
Figure 4.27 - Workflow of prosthesis creation and validation114
Figure A.1 - User interface of AUDROS Model Shape134
Figure A.2 - User interface of View Designer module134
LIST OF TABLES

Table 1.1 - Comparative advantages and disadvantages of data acquisition methods..24
Table 1.2 - List of software used to convert DICOM to STL ...27
Table 1.3 - Popular 3D File Formats (Farahani et al., 2017) ...28
Table 2.1 - Definitions of data, information and knowledge ...34
Table 2.2 - Logical axioms table in medical domain (Zeshan and Mohamad, 2012)...44
Table 2.3 - The role of PLM in different life stages (Saaksvuori and Immonen, 2008b) 56
Table 4.1 - Scenario of the implementation process in AUDROS...............................98
Table A.1 - List of PLM software ..132
Une approche PLM pour supporter les collaborations et le partage des connaissances dans le secteur médical: Application aux processus de soins par implantation de prothèses.

A PLM based approach for supporting collaboration and knowledge management in the medical domain: Application to the treatment process requiring prosthesis implantation

Résumé

Le secteur médical est un domaine dynamique en constante évolution, nécessitant des améliorations continues de ses processus métier et une assistance intelligente aux acteurs impliqués. Ce travail de thèse se focalise sur le processus de soins nécessitant l'implantation d'une prothèse. La particularité de ce processus est qu'il met en interaction deux cycles de vie appartenant respectivement au domaine médical et celui de l'ingénierie. Ceci implique plusieurs actions de collaboration entre des acteurs métier très variés. Cependant, des problèmes de communication et de partage de connaissances peuvent exister en raison de l'hétérogénéité de la sémantique utilisée et des pratiques métiers propres à chaque domaine.

Dans ce contexte, ce travail de thèse s’intéresse aux apports des approches d’ingénierie des connaissances et de gestion du cycle de vie du produit pour répondre aux problématiques sous-jacentes au processus de soins médicaux nécessitant l’implantation d’une prothèse. Pour se faire, un cadre conceptuel est proposé pour analyser les connexions entre les cycles de vie de maladie (domaine Médical) et de la prothèse (domaine d’ingénierie). Sur la base de cette analyse, un modèle sémantique sous forme d’une ontologie pour le domaine médical est défini dans le cadre de la construction d’une approche PLM à base de connaissances. L’application de cette proposition est démontrée à travers l’impléméntation de quelques fonctions utiles dans un outil PLM du marché nommé AUDROS.

Mots clés :
PLM, Processus de soins, Prothèse, Partage des données, réutilisation des connaissances, Audros.

Abstract

Medical sector is a dynamic domain that requires continuous improvement of its business processes and assistance to the actors involved. This research focuses on the medical treatment process requiring prosthesis implantation. The specificity of such a process is that it makes in connection two lifecycles belonging to medical and engineering domains respectively. This implies several collaborative actions between stakeholders from heterogeneous disciplines. However, several problems of communication and knowledge sharing may occur because of the variety of semantic used and the specific business practices in each domain.

In this context, this PhD work is interested in the potential of knowledge engineering and product lifecycle management approaches to cope with the above problems. To do so, a conceptual framework is proposed for the analysis of links between the disease (medical domain) and the prosthesis (engineering domain) lifecycles. Based on this analysis, a semantic ontology model for medical domain is defined as part of a global knowledge-based PLM approach proposition. The application of the proposition is demonstrated through an implementation of useful function in the AUDROS PLM software.

Key Words
PLM, Treatment process, Prosthesis, Data sharing, Knowledge reuse, Audros.