Power Electronic Control in Electrical Systems
Newnes Power Engineering Series

Series editors
Professor TJE Miller, University of Glasgow, UK
Associate Professor Duane Hanselman, University of Maine, USA
Professor Thomas M Jahns, University of Wisconsin-Madison, USA
Professor Jim McDonald, University of Strathclyde, UK

Newnes Power Engineering Series is a new series of advanced reference texts covering the core areas of modern electrical power engineering, encompassing transmission and distribution, machines and drives, power electronics, and related areas of electricity generation, distribution and utilization. The series is designed for a wide audience of engineers, academics, and postgraduate students, and its focus is international, which is reflected in the editorial team. The titles in the series offer concise but rigorous coverage of essential topics within power engineering, with a special focus on areas undergoing rapid development.

The series complements the long-established range of Newnes titles in power engineering, which includes the Electrical Engineer’s Reference Book, first published by Newnes in 1945, and the classic J&P Transformer Book, as well as a wide selection of recent titles for professionals, students and engineers at all levels.

Further information on the Newnes Power Engineering Series is available from bhmarketing@repp.co.uk
www.newnespress.com

Please send book proposals to Matthew Deans, Newnes Publisher
matthew.deans@repp.co.uk

Other titles in the Newnes Power Engineering Series
Miller Electronic Control of Switched Reluctance Machines 0-7506-5073-7
Agrawal Industrial Power Engineering and Applications Handbook 0-7506-7351-6
Power Electronic Control in Electrical Systems

E. Acha
V.G. Agelidis
O. Anaya-Lara
T.J.E. Miller
Contents

Preface xi

1 Electrical power systems – an overview 1
1.1 Introduction 1
1.2 Background 1
1.3 General composition of the power network 4
 1.3.1 Generation 6
 1.3.2 Transmission 8
 1.3.3 Distribution 13
 1.3.4 Utilization 16
1.4 An overview of the dynamic response of electrical power networks 18
 1.4.1 Transient stability 20
1.5 Snapshot-like power network studies 23
 1.5.1 Power flow studies 23
 1.5.2 Optimal power flow studies 24
 1.5.3 Fault studies 24
 1.5.4 Random nature of system load 26
 1.5.5 Non-linear loads 27
1.6 The role of computers in the monitoring, control and planning of power networks 27
 1.6.1 Energy control centres 27
 1.6.2 Distribution networks 28
 1.6.3 Planning 29
1.7 Conclusion 29

2 Power systems engineering – fundamental concepts 31
2.1 Reactive power control 31
2.2 Conventions used in power engineering 34
2.3 Basic source/load relationships 35
 2.3.1 Fault level and circuit-breaker ratings 35
 2.3.2 Thévenin equivalent circuit model of a power system 36
2.3.3 Loads and phasor diagrams
2.3.4 The symmetrical system

2.4 Complex power, apparent power, real and reactive power

2.5 Leading and lagging loads

2.6 Power factor correction

2.7 Compensation and voltage control

2.7.1 System load line

2.8 Control of power and frequency

2.8.1 Relationships between power, reactive power, voltage levels and load angle

2.9 Three-phase systems

2.9.1 Development of three-phase systems

2.9.2 The wye–delta transformation

2.9.3 Balancing an unbalanced load

2.10 Power flow and measurement

2.10.1 Single-phase

2.10.2 Two-phase

2.10.3 Three-phase

2.10.4 Power measurement

2.11 Polyphase transformers

2.11.1 Definition

2.11.2 Functions

2.11.3 Parallel operation

2.11.4 Zero-sequence effects in three-phase transformers

2.11.5 Providing a path for zero-sequence currents

2.12 Harmonics

2.12.1 Harmonic power

2.12.2 RMS values in the presence of harmonics

2.12.3 Phase sequence of harmonics in balanced three-phase systems

2.12.4 Harmonics in balanced networks

2.12.5 AC line harmonics of three-phase rectifier

2.13 Per-unit quantities

2.13.1 Standard formulas for three-phase systems

2.13.2 Changing base

2.13.3 Transformers in per-unit systems

2.14 Conclusion

3 Transmission system compensation

3.1 Introduction

3.2 Uncompensated lines

3.2.1 Voltage and current equations of a long, lossless transmission line

3.2.2 Surge impedance and natural loading of a transmission line

3.2.3 The uncompensated line on open-circuit
3.3 Uncompensated lines under load
3.3.1 Radial line with fixed sending-end voltage
3.3.2 Uncompensated symmetrical line: variation of voltage and reactive power with load
3.3.3 Maximum power and steady-state stability
3.4 Compensated transmission lines
3.4.1 Passive and active compensators
3.5 Static shunt compensation
3.5.1 Multiple shunt reactors along a long line
3.5.2 Voltage control by means of switched shunt compensation
3.5.3 The mid-point shunt compensator
3.6 Series compensation
3.6.1 Power-transfer characteristics and maximum transmissible power
3.7 Conclusion

4 Power flows in compensation and control studies
4.1 Introduction
4.2 FACTS equipment representation in power flows
4.2.1 The SVC
4.2.2 The TCSC
4.2.3 The static phase shifter
4.2.4 The STATCOM
4.2.5 The DVR
4.2.6 The UPFC
4.2.7 The HVDC-Light
4.3 Fundamental network equations
4.3.1 Nodal admittances
4.3.2 Numerical example 1
4.3.3 Rules for building the nodal admittance matrix
4.3.4 Nodal impedances
4.3.5 Numerical example 2
4.4 The power flow theory
4.4.1 Basic concepts
4.4.2 Conventional power plant representation
4.4.3 Nodal impedance based power flow method
4.4.4 Newton–Raphson power flow method
4.4.5 Numerical example 3
4.4.6 Numerical example 4
4.5 Reactive power control
4.5.1 General aspects
4.5.2 SVC power flow modelling
4.5.3 Numerical example 5
4.5.4 STATCOM power flow modelling
4.6 Active power control
4.6.1 General aspects
4.6.2 TCSC power flow modelling 139
4.6.3 Numerical example 6 140
4.6.4 SPS power flow modelling 140
4.6.5 Numerical example 7 142
4.7 Combined active and reactive power control 143
4.7.1 General aspects 143
4.7.2 Simple UPFC power flow modelling 143
4.7.3 Advanced UPFC power flow modelling 144
4.7.4 Numerical example 8 147
4.7.5 HVDC Light power flow modelling 149
4.7.6 Numerical example 9 150
4.8 Conclusion 152

5 Power semiconductor devices and converter hardware issues 153
5.1 Introduction 153
5.2 Power semiconductor devices 153
5.2.1 Diode 154
5.2.2 Thyristor 156
5.2.3 Light-triggered thyristor (LTT) 158
5.2.4 Desired characteristics of fully-controlled power semiconductors 159
5.2.5 Gate-turn-off thyristor 162
5.2.6 Metal-oxide-semiconductor field effect transistor 163
5.2.7 Insulated-gate bipolar transistor 164
5.2.8 MOS-controlled thyristor 165
5.2.9 Other semiconductor devices 166
5.2.10 Semiconductor switching-power performance 166
5.3 Power modules 167
5.4 Passive components 167
5.5 Ancillary equipment 168
5.6 Cooling systems 168
5.7 Component layout 171
5.8 Protection of semiconductors – snubber circuits 171
5.9 Current trends in power semiconductor technology 174
5.10 Conclusion 175

6 Power electronic equipment 177
6.1 Introduction 177
6.2 Thyristor-controlled equipment 178
6.2.1 Thyristor-controlled reactor (TCR) 178
6.2.1.1 Principles of operation of the TCR 178
6.2.1.2 Fundamental voltage/current characteristic 180
6.2.1.3 Harmonics 182
6.2.2 The thyristor-controlled transformer (TCT) 185
6.2.3 The TCR with shunt capacitors 186
6.2.4 The thyristor-switched capacitor (TSC) 188
6.2.4.1 Principles of operation 188
6.2.5 Switching transients and the concept of transient-free switching 190
 6.2.5.1 Ideal transient-free switching 190
 6.2.5.2 Switching transients in the general case 192
 6.2.5.3 Switching a discharged capacitor 196
6.3 Voltage-source converters (VSCs) and derived controllers 197
 6.3.1 Single-phase half-bridge VSC 197
 6.3.2 Single-phase full-bridge VSC 201
 6.3.3 Conventional three-phase six-step VSC 206
 6.3.4 Single-phase half-bridge neutral-point-clamped (NPC) VSC 210
 6.3.5 Single-phase full-bridge NPC VSC 212
 6.3.6 Other multilevel converter topologies 215
 6.3.7 Three-level three-phase NPC VSC 222
 6.3.8 Pulse-width modulated (PWM) VSCs 222
6.4 Uninterruptible Power Supplies (UPSs) 229
6.5 Dynamic voltage restorer (DVR) 232
6.6 Energy storage systems 233
 6.6.1 Flywheel energy storage systems 233
 6.6.2 Superconducting magnetic energy storage (SMES) 238
 6.6.3 Other energy storage systems 240
6.7 HVDC 241
 6.7.1 HVDC schemes and control 244
 6.7.2 Advanced concepts in conventional HVDC applications 249
 6.7.3 HVDC based on voltage-source converters 249
 6.7.4 Multilevel VSCs and HVDC 252
6.8 Active filters (AFs) 253
6.9 Combined active and passive filters 259
6.10 Advanced concepts in reactive power control equipment 261
6.11 Conclusion 261

7 Harmonic studies of power compensating plant 263
 7.1 Introduction 263
 7.2 Effect of harmonics on electrical equipment 264
 7.3 Resonance in electric power systems 265
 7.3.1 Numerical example 1 267
 7.4 Thyristor-controlled reactors 269
 7.4.1 TCR periodic characteristics 269
 7.4.2 TCR currents in harmonic domain 271
 7.4.2.1 Harmonic switching vectors 272
 7.4.2.2 Harmonic admittances 273
 7.4.2.3 Harmonic Norton and Thévenin equivalent circuits 273
 7.4.2.4 Constraint equations 274
 7.4.3 Three-phase TCRs 275
 7.4.3.1 Numerical example 2 276
 7.4.3.2 Numerical example 3 277
Contents

7.5 SVC representations 279
7.6 Thyristor-controlled series compensation 280
 7.6.1 Main parameters and operating modes 280
 7.6.2 TCSC harmonic domain modelling 286
 7.6.2.1 Single-phase TCSC representation 286
 7.6.2.2 Impedance characteristics 286
 7.6.2.3 Three-phase TCSC representation 287
7.7 TCSC systems 287
7.8 Conclusion 289

8 Transient studies of FACTS and Custom Power equipment 290
 8.1 Introduction 290
 8.2 Electromagnetic transient analysis 291
 8.3 Electromagnetic transient simulator PSCAD/EMTDC 292
 8.3.1 Creation of a new project and data entry 293
 8.3.2 Generation of the circuit schematic diagram using Draft 295
 8.3.3 Transient simulation using RunTime Executive 298
 8.3.4 Plotting and analysis of results using MultiPlot 298
 8.4 Static Var Compensator (SVC) 300
 8.5 Thyristor-Controlled Series Compensator (TCSC) 311
 8.5.1 Example 1 312
 8.5.2 Example 2 313
 8.6 Static Compensator (STATCOM) 320
 8.6.1 STATCOM used as a FACTS controller 324
 8.6.2 Distribution Static Compensator (D-STATCOM) 330
 8.7 Dynamic Voltage Restorer (DVR) 336
 8.8 Power Factor Correction (PFC) 342
 8.9 Active filters (AFs) 352
 8.9.1 Shunt active filter 356
 8.10 Solid-State Transfer Switch (SSTS) 367
 8.11 Conclusion 372

9 Examples, problems and exercises 373
 9.1 Simple exercises 373
 9.2 A basic worked example – leading and lagging loads 375
 9.3 Simple basic problems 376
 9.3.1 Answers to problems in Section 9.3 377
 9.4 Worked examples 378

Appendix 407

Bibliography 427

Index 439