Measuring Agricultural Market Risk
GARCH estimation vs. Conditional Extreme Value Theory

NGUYEN THI PHUONG THAO

A dissertation prepared in partial fulfilment of the requirements of the Degree of Masters of Science Business Specialising in Finance

UCD Michael Smurfit Graduate Business School
College of Business and Law
University College Dublin

Research Advisor
Professor Louis Murray

August 2015
ABSTRACT

Despite the enormous number of studies for Value at Risk application in financial markets and various commodity markets, similar researches in the agricultural market are relatively new and limited. Besides, of many sorts of estimation techniques, there seems to be no paper about the combination of univariate GARCH models and Extreme Value Theory (EVT). This study examines the effectiveness of twelve GARCH-based models on two risk measures: Value at Risk and Expected Shortfall for two agricultural commodities: wheat and soybean in the U.S market. Six of them are EVT-free models while the remainings are EVT-based models or conditional EVT models. For each category, models are six combinations of three types of GARCH models (GARCH, GJR-GARCH, and EGARCH) to two types of distributions (Gaussian and Student’s). To assess the validity of models, I conduct the back-testing and several out-of-sample test. This study shows the poor performance of EGARCH models in comparison with GARCH and GJR-GARCH models. Next, the Student’s t-distribution can cause Value at Risk overestimation. Finally, the mixture of GARCH models and EVT performs better than the corresponding GARCH-type one. Several assumptions during model implementation, however, hide the perils that can harm the reliability of back-testing results.
ACKNOWLEDGEMENT

This thesis is the result of my three-month hard working. More importantly, it is my physical achievement of one –year studying in UCD Smurfit, Ireland. I would like to give this as gratitude to all people who believe in me, support and encourage me during the passing of this year and the course of thesis writing as well.

I would like to give my sincere thanks to my supervisor, Professor Louis Murray, for his valuable pieces of advice and encouragement.

I would like to thank all professors, lecturers and tutors for their immense knowledge and their dedication. Without them, I must cope with more difficulties in implementing this study.

I owe the Irish Development Education Association Scholarship (IDEAS) a debt of gratitude for giving me the opportunity to experience a different academic and social environment.

I would like to express my gratitude to UCD staff and Irish Council for International Students for their dedicated support.

I am grateful to my friends, Ms. Pham Thi Mai Huong and Mr. Nguyen Thanh Thai for inspiring me during the course of my thesis.

I would like to express my indebtedness to my parents and my younger sister for their endless love and encouragement.
Table of Contents

1. **Introduction** .. 1

2. **Literature Review** ... 4
 2.1 **Risk Measures** ... 4
 2.1.1 Value at Risk and Expected Shortfall 4
 2.1.2 Value at Risk estimation methods .. 6
 2.1.3 The choice of distribution .. 9
 2.2 **Risk Measures in Agriculture** ... 10
 2.2.1 Motivations of Value at Risk application in agricultural sector 11
 2.2.2 Agricultural market risk measurement 14

3. **Methodology** ... 16
 3.1 **Risk Measures** ... 16
 3.1.1 Value at Risk .. 16
 3.1.2 Expected Shortfall .. 16
 3.2 **Estimation Method** .. 17
 3.2.1 ARMA specification ... 17
 3.2.2 GARCH specification ... 18
 3.3 **Extreme Value Theory** .. 20
 3.3.1 The General Pareto Distribution ... 21
 3.3.2 Conditional Extreme Value Theory 22
 3.4 **Back-testing** .. 22
 3.4.1 Violation ratio .. 22
 3.4.2 Bernoulli Coverage test ... 23
 3.4.3 Independence test ... 23
 3.4.4 Conditional Coverage test .. 24
 3.4.5 Normalized Expected Shortfall .. 24

4. **Data and Primary Analysis** .. 26
 4.1 **Data** .. 26
 4.2 **Primary Analysis** .. 27
 4.2.1 Descriptive statistics ... 27
 4.2.2 Normality .. 28
 4.2.3 Stationary .. 28
 4.2.4 Autocorrelation and heteroscedasticity 29
5 EMPIRICAL RESULT ...32
 5.1 ARMA-GARCH MODEL ..32
 5.2 BACK-TESTING RESULTS ..36
 5.2.1 Value at Risk back-testing ..37
 5.2.2 Expected Shortfall Back-testing ...42
6 CONCLUSION AND FURTHER RESEARCH ...44
REFERENCES ..55
APPENDIX : MATLAB CODES ..61
LIST OF TABLES

Table 1: Descriptive Statistics ... 28
Table 2: Stationary.. 29
Table 3: Ljung –Box Q-Statistic test .. 31
Table 4: ARMA-GARCH estimations of Wheat 34
Table 5: ARMA-GARCH estimations of Soybean.................................. 35
Table 6: Violation Comparison - Wheat .. 47
Table 7: Violation Comparison- Soybean... 48
Table 8: Unconditional Coverage, Independence and Conditional Coverage test - Wheat ... 49
Table 9: Unconditional Coverage, Independence and Conditional Coverage test - Soybean ... 50
Table 10: Comparison of Normalized Expected Shortfall - Wheat 51
Table 11: Comparison of Normalized Expected Shortfall - Soybean...... 51

LIST OF FIGURES

Figure 1: Price, returns and squared returns of agricultural commodities 27
Figure 2: Autocorrelation.. 30
Figure 3: Heteroscedasticity ... 30
Figure 4: Mean Excess Function Plot - Wheat 52
Figure 5: Mean Excess Function Plot - Soybean.................................. 52
Figure 6 : 1-day VaR 5% for Wheat in the whole out of sample from 2007 - 2014 ... 53
Figure 7: 1-day VaR 5% for Soybean in the whole out of sample from 2007 - 2014 ... 54