UNIVERSITÉ DE LORRAINE

École Doctorale RP2E, Ressources Procédés Produits Environnement Laboratoire Réactions et Génie des Procédés

THÈSE

Pour l'obtention du titre de Docteur de l'Université de Lorraine Spécialité Génie des Procédés et des Produits par

Dinh-Huan NGUYEN

OPTIMISATION DE LA CONCEPTION ET DU FONCTIONNEMENT DES STATIONS DE TRAITEMENT DES EAUX USÉES

Soutenue publiquement le 24 mars 2014, devant la commission d'examen

Christophe DAGOT	Professeur, Université de Limoges	Rapporteur
Nicolas ROCHE	Professeur, Université de Marseille	Rapporteur
Benoît CHACHUAT	Professeur, Imperial College, London, UK	Examinateur
Olivier POTIER	Maître de Conférences, Université de Lorraine	Examinateur
François LESAGE	Maître de Conférences, Université de Lorraine	Examinateur
Abderrazak LATIFI	Professeur, Université de Lorraine	Directeur de thèse

Table des matières

Table des matier	es	1
Table des figures	S	vii
Table des tableau	ıx	xi
Nomenclature		xiii
C	érale	
•	SENTATION ET MODÉLISATION DES STATIONS ÉES	
	és sur le traitement des eaux usées	
	ndement de l'épuration biologique des eaux usées	
	océdé de traitement par boues activées	
1.1.3. Sp	écificité des petites stations de traitement	11
1.1.4. Sp	écificité des grandes stations de traitement	13
1.2. Généralit	és sur la modélisation des stations d'épuration	14
1.2.1. Pr	ésentation des principaux modèles biologiques	14
1.2.2. M	odèle ASM1	14
1.2.2.1.	Unité de mesure de concentration utilisée	14
1.2.2.2.	Processus mis en jeu	15
1.2.2.3.	Variables d'état prise en compte dans le modèle ASM1.	16
1.3. Station de	e traitement de petite taille	18
1.3.1. Li	ste des variables d'état	18
1.3.2. Ci	nétiques des réactions mises en jeu	19
1.3.3. Ta	ux de conversion et valeurs des paramètres	20
1.3.3.1.	Taux de conversion	20
1.3.3.2.	Valeurs des paramètres biologiques	20
1.3.4. Bi	lan de matière dans le réacteur	22
1.3.5. Bi	lan de matière dans le décanteur	23
1.3.5.1.	Modèle réaliste (à couches)	23
1.3.5.2.	Modèle simplifié	28
1.3.6. In:	fluents et effluents	29
1.3.6.1.	Influents	29
1.3.6.2.	Effluents	29

1.4. Stations d'épuration de grande taille	30
1.4.1. Liste des variables d'état et processus	30
1.4.1.1. Liste des variables d'état	30
1.4.1.2. Cinétiques des réactions mises en jeu	30
1.4.2. Taux de conversion et valeurs des paramètres	31
1.4.2.1. Taux de conversion observés	31
1.4.2.2. Valeurs des paramètres biologiques	32
1.4.3. Bilan de matière dans le réacteur	32
1.4.4. Bilan de matière dans le décanteur	33
1.4.5. Âge des boues dans le système	35
1.4.6. Influents et effluents	37
1.4.6.1. Influents	37
1.4.6.2. Effluents	38
Chapitre 2 MÉTHODE D'OPTIMISATION DYNAMIQUE	39
2.1. Introduction	40
2.2. Position du problème d'optimisation.	40
2.2.1. Critère	40
2.2.2. Modèle de procédé	40
2.2.3. Contraintes	41
2.3. Méthodes de résolution.	41
2.3.1. Méthodes directes	41
2.3.2. Méthode des sensibilités	42
2.3.2.1. Sensibilités paramétriques	43
2.3.2.2. Description de l'algorithme d'optimisation	45
2.3.2.3. Exemple de détermination des équations de sensibilité	47
2.4. Présentation du logiciel gProms	50
Chapitre 3 SIMULATION ET OPTIMISATION DE STATIONS D'ÉPURATION	
PETITE TAILLE	
3.1. Description de la station étudiée.	
3.2. Formulation des données d'entrée (identification)	
3.2.1. Mesures expérimentales	
3.2.2. Formulation des données d'entrée	55
3.2.3. Comparaison entre les corrélations et les valeurs réellement utilisée gProms à partir de la lecture du fichier de données brutes	_
3.3. Simulation dynamique pour différents modèles de décanteur	
5.5. Simulation aynamique pour université modèles de décanteur	57

3.3.1. Rappels des modèles du décanteur	. 59
3.3.2. Résultats de simulation	. 60
3.4. Influence du modèle du décanteur sur la performance optimale	. 61
3.4.1. Formulation du problème d'optimisation	. 62
3.4.2. Résultats d'optimisation	. 63
3.4.3. Conclusion	. 65
3.5. Optimisation dynamique de l'énergie d'aération continue	. 65
3.5.1. Formulation du problème d'optimisation	. 66
3.5.2. Résultats d'optimisation	. 66
3.5.3. Comparaison avec le fonctionnement actuel	. 67
3.6. Amélioration de la station d'épuration	. 68
3.6.1. Optimisation de la structure proposée	. 69
3.6.1.1. Cas de non-recyclage interne $(Q_a = 0)$. 69
3.6.1.2. Cas du recyclage interne $(Q_a > 0)$. 71
3.6.2. Conclusion	. 73
3.7. Influence de la méthode de réduction de l'azote (alternée ou continue) sur la	
performance optimale	
3.7.1. Introduction	
3.7.2. Formulation du problème d'optimisation	
3.7.2.1. Cas d'un seul bassin avec aération alternée	
3.7.2.2. Cas de deux bassins avec aération continue	
3.7.3. Résultats d'optimisation	
3.7.3.1. Cas d'un seul bassin avec aération alternée	. 74
3.7.3.2. Cas de deux bassins avec aération continue	. 75
3.7.3.3. Comparaison de la consommation énergétique	
3.8. Conclusion.	
Chapitre 4 SIMULATION ET OPTIMISATION DE STATIONS D'ÉPURATION :	
GRANDE TAILLE	
4.2. Simulation dynamique de la station d'épuration	
4.2.1. Introduction	
4.2.2. Simulation	
4.3. Optimisation de l'énergie d'aération	
4.3.1. Introduction	
4.3.2. Problème d'optimisation	

4.3.3. Re	ésultats de l'optimisation	85
4.3.4. Co	onclusions	87
4.4. Optimisa	tion du coût total	88
4.4.1. In	troduction	88
4.4.2. C	ritère d'optimisation	88
4.4.2.1.	Coût d'investissement (CI)	88
4.4.2.2.	Coût de fonctionnement (CO)	89
4.4.3. Si	imulation	91
4.4.4. Fo	ormulation du problème d'optimisation	91
4.4.4.1.	Cas des variables de décision k _L a _i et Q _a	92
4.4.4.2.	Cas d'utilisation de toutes les variables de décision sa	ns contrainte sur l'âge
des boues 94		
4.4.4.3. 1'âge des boue	Cas d'utilisation de toutes les variables de décisio es 98	n avec contrainte sur
4.4.5. Co	onclusions	100
4.5. Optimisa	tion multicritère	101
4.5.1. In	troduction	101
4.5.2. M	léthodes utilisées en optimisation multicritère	101
4.5.3. Fo	ormulation du problème d'optimisation	104
4.5.4. Re	ésultats d'optimisation	106
4.5.4.1.	Cas d'un seul intervalle de temps	106
4.5.4.2.	Cas de plusieurs intervalles de temps	107
4.5.5. Co	onclusions	109
4.6. Optimisa	tion de la conception et du dimensionnement	109
4.6.1. In	troduction	109
4.6.2. Re	evue bibliographique	109
4.6.3. A	pproche proposée	110
4.6.4. V	alidation de l'approche proposée	110
4.6.5. Co	oûts de la station d'épuration	111
4.6.6. St	tructure et dimensions optimales	112
4.6.6.1.	Cas d'un seul bassin	113
4.6.6.2.	Cas de 2 bassins	115
4.6.6.3.	Cas de 3 bassins	118
4.6.6.4.	Cas de 4 bassins	120

	4.6.6.5.	Cas de 5 bassins	122
	4.6.7. Co	onclusions	124
4.7	. Conclusio	ons	125
Chapi	itre 5 IDE	NTIFICATION ET OPTIMISATION D'UNE STATION D'ÉPU	JRATION
		E	
		ion	
5.2		tion du procédé	
		hoix du modèle	
	5.2.2. M	odélisation du procédé	
	5.2.2.1.	Modélisation du réacteur biologique	
	5.2.2.2.	Modélisation du décanteur	
5.3		'épuration considéré	
	5.3.1. Co	onfiguration de la station de traitement	129
	5.3.2. Do	onnées expérimentales	130
	5.3.3. Bi	ilans global et partiel de matière	130
	5.3.3.1.	Bilan de matière dans le décanteur primaire	130
	5.3.4. Ét	at initial de la station d'épuration	132
	5.3.4.1.	Détermination des coefficients de transfert d'oxygène	132
	5.3.4.2.	Détermination des concentrations initiales	132
5.4	l. Identifica	ntion paramétrique du modèle	132
	5.4.1. Aı	nalyse d'estimabilité	133
	5.4.2. Pr	océdure d'identification paramétrique	137
	5.4.2.1.	Jeu de paramètres par défaut	137
	5.4.2.2.	Calcul et analyse d'estimabilité	137
	5.4.3. Ré	ésultats de l'identification	139
	5.4.3.1.	Identification avec les données simulées par WEST	139
	5.4.3.2.	Identification avec les données mesurées	140
5.5	5. Simulatio	on dynamique	141
5.6	. Optimisa	tion dynamique de l'énergie d'aération	144
	5.6.1. Pr	oblème d'optimisation	144
	5.6.2. Ré	ésultats de l'optimisation	144
	5.6.2.1.	Cas d'un intervalle	145
	5.6.2.2.	Cas de 7 intervalles	146
5.7	7. Compara	ison des configurations des stations BSM1 et Verulam	147

Table des matières

5.8. Cor	nclusions	150
Conclusion	s générales et perspectives	152
Bibliograpl	hie	156
Annexe A	Données de petite station d'épuration	162
Annexe B	Données et résultats de la station du Benchmark (BSM1)	163
Annexe C	Données expérimentales et résultats de la station Verulam	180
Annexe D	Comparaison du coût total entre ASM3 et BSM1	187

Table des figures

Figure 1.1. Étapes du processus de dégradation biologique	8
Figure 1.2. Configuration du procédé de traitement par boues activées	9
Figure 1.3. Étapes du processus de dégradation biologique de l'azote	
Figure 1.4. Schéma conceptuel du modèle ASM1	15
Figure 1.5. Décomposition de la DCO en variables du modèle ASM1	17
Figure 1.6. Décomposition de l'Azote en variables du modèle ASM1	18
Figure 1.7. Bilans de matière dans les couches du décanteur	25
Figure 1.8. Station du Benchmark	30
Figure 1.9. Numérotation des couches et position de l'alimentation	32
Figure 1.10. Variabilité des données d'entrée par temps sec, pluvieux et orageux	37
Figure 2.1. Représentation schématique de l'algorithme de résolution	46
Figure 2.2. Cas de deux intervalles de temps $(N = 2)$	48
Figure 3.1. Configuration de la station de traitement biologique étudiée	52
Figure 3.2. Configuration des cycles d'aération (commande par horloges)	53
Figure 3.3. Données expérimentales	55
Figure 3.4. Comparaison des prédictions de la corrélation et des mesures moyennes DCO	
Figure 3.5. Comparaison des prédictions de la corrélation et des mesures moyennes de l'influent Q ₀	
Figure 3.6. Comparaison des prédictions de la corrélation et des mesures moyennes de	
Figure 3.7. Comparaison des prédictions de la corrélation et des mesures moyennes d	
Figure 3.8. Modèle de simulation gProms	57
Figure 3.9. Comparaison entre les mesures expérimentales corrélées du débit Q ₀ et les utilisées directement par gProms	
Figure 3.10. Comparaison entre les mesures expérimentales corrélées de DCO et les utilisées directement par gProms.	
Figure 3.11. Décanteur avec les modèles simplifié et réaliste	59
Figure 3.12. Comparaison des modèles du décanteur : concentration en DCO	60
Figure 3.13. Comparaison des modèles du décanteur : concentration en DBO ₅	60
Figure 3.14. Comparaison des modèles du décanteur : concentration en NGL	61
Figure 3.15. Comparaison des modèles du décanteur : concentration en MES	61
Figure 3.16. Séquence d'aération et définition des paramètres d'optimisation	62

Figure 3.17. Énergie d'aération minimale en fonction du nombre de cycles	63
Figure 3.18. Profils d'aération après optimisation	64
Figure 3.19. Concentrations en NGL de l'effluent.	64
Figure 3.20. Profil d'aération optimal	66
Figure 3.21. Concentrations optimales de l'effluent	67
Figure 3.22. Comparaison entre la réalité et l'optimisation	68
Figure 3.23. Station d'épuration avant et après amélioration ($V = V_1 + V_2$)	69
Figure 3.24. Résultats d'optimisation (cas de $Q_a = 0$)	
Figure 3.25. Concentrations optimales sur l'effluent (cas de $Q_a = 0$)	70
Figure 3.26. Comparaison entre le fonctionnement actuel et optimisé (cas de $Q_a = 0$)	71
Figure 3.27. Résultats de l'optimisation (cas de Q _a > 0)	72
Figure 3.28. Concentrations optimales de l'effluent (cas de Q _a > 0)	72
Figure 3.29. Comparaison entre le fonctionnement actuel et optimisé (cas de $Q_a > 0$)	72
Figure 3.30. Profil optimal d'aération dans le cas d'un seul bassin	74
Figure 3.31. Profil optimal d'aération cas de deux bassins	75
Figure 3.32. Comparaison des performances des fonctionnements réels, avec aération al	ternée
et aération continue	75
Figure 4.1. Station d'épuration du Benchmark	78
Figure 4.2. Comparaison entre le débit expérimental et le débit traité de gProms	80
Figure 4.3. Concentrations de l'effluent (temps sec)	82
Figure 4.4. Concentrations de l'effluent (temps pluvieux)	82
Figure 4.5. Concentrations de l'effluent (temps orageux)	83
Figure 4.6. Âge des boues dans le système	83
Figure 4.7. Influence du nombre d'intervalles sur le critère d'optimisation	85
Figure 4.8. Profils d'aération avant et après optimisation.	85
Figure 4.9. Énergie consommée dans la station d'épuration	86
Figure 4.10. Concentrations des effluents après optimisation	87
Figure 4.11. Âge des boues après optimisation.	87
Figure 4.12. Répartition des coûts avant optimisation (dynamique)	91
Figure 4.13. Coûts optimaux et leur répartition	93
Figure 4.14. Coût total avant et après optimisation	93
Figure 4.15. Concentrations de l'effluent après optimisation	94
Figure 4.16. Âge des boues après optimisation	94
Figure 4.17. Coûts optimaux et leur répartition	96
Figure 4.18. Coût total avant (Benchmark) et après optimisation	96
Figure 4.19. Concentrations de l'effluent après optimisation	97
Figure 4.20. Âge des boues après optimisation	97

Figure 4.21. Coûts optimaux et leur répartition	99
Figure 4.22. Coût total avant et après optimisation	99
Figure 4.23. Concentrations de l'effluent après optimisation	. 100
Figure 4.24. Âge des boues après optimisation	. 100
Figure 4.25. Méthode d'agrégation	. 102
Figure 4.26. Influence de la valeur ω sur l'optimisation (cas d'un intervalle)	. 106
Figure 4.27. Profils d'aération pour le point correspond au coût total pondéré minimal	. 107
Figure 4.28. Influence de la valeur ω sur l'optimisation (cas de 7 intervalles)	. 108
Figure 4.29. Profils d'aération pour le point qui correspond au coût total pondéré minimal	108
Figure 4.30. Répartition des coûts de la station BSM1 en fonctionnement (statique)	. 111
Figure 4.31. Concentrations de l'effluent (statique) avant optimisation	. 112
Figure 4.32. Superstructures pour une station de traitement des eaux usées	. 112
Figure 4.33. Superstructure initiale de la station (cas de 1 bassin)	. 113
Figure 4.34. Structure optimale de la station (cas de 1 bassin)	. 114
Figure 4.35. Répartition des coûts optimaux (cas de 1 bassin)	. 115
Figure 4.36. Concentration en NGL de l'effluent après optimisation	. 115
Figure 4.37. Superstructure initiale de la station (cas de 2 bassins)	. 115
Figure 4.38. Superstructure optimale de la station (cas de 2 bassins)	. 117
Figure 4.39. Répartition des coûts optimaux (cas de 2 bassins)	. 117
Figure 4.40. Superstructure initiale de la station (cas de 3 bassins)	. 118
Figure 4.41. Superstructure optimale de la station (cas de 3 bassins)	. 119
Figure 4.42. Répartition des coûts optimaux (cas de 3 bassins)	. 119
Figure 4.43. Superstructure initiale de la station (cas de 4 bassins)	. 120
Figure 4.44. Superstructure optimale de la station (cas de 4 bassins)	. 121
Figure 4.45. Répartition des coûts optimaux (cas de 4 bassins)	
Figure 4.46. Superstructure initiale de la station (cas de 5 bassins)	. 122
Figure 4.47. Superstructure optimale de la station (cas de 5 bassins)	. 123
Figure 4.48. Répartition des coûts optimaux (cas de 5 bassins)	. 123
Figure 5.1. Schéma de la station d'épuration de Verulam	. 129
Figure 5.2. Bilan de matière dans le décanteur primaire	. 131
Figure 5.3. Bilan de matière global dans le système	. 131
Figure 5.4. Résultats de l'analyse de sensibilité sous Matlab	
Figure 5.5. Résultats après l'identification.	. 140
Figure 5.6. Comparaison des mesures expérimentales et des prédictions du modèle obtent	
l'aide des valeurs par défaut et identifiées des paramètres	
Figure 5.7. Profils d'aération de la station en fonctionnement statique	. 142

Figure 5.8. Concentrations simulées de l'effluent en utilisant les valeurs identif paramètres	
Figure 5.9. Profils optimaux d'aération	
Figure 5.10. Énergie consommée dans l'aération de la station d'épuration dans le c seul intervalle	cas d'un
Figure 5.11. Concentrations de l'effluent après optimisation dans le cas d'un seul in	
Figure 5.12. Profils optimaux d'aération (cas de 7 intervalles)	146
Figure 5.13. Énergie consommée dans la station d'épuration (cas de 7 intervalles)	147
Figure 5.14. Concentrations de l'effluent après optimisation (cas de 7 intervalles)	147
Figure B.1. Concentrations dans le bassin (temps sec)	164
Figure B.2. Concentrations dans le décanteur (temps sec)	166
Figure B.3. Concentrations de l'effluent (temps sec)	166
Figure B.4. Concentrations dans le bassin (temps pluvieux)	168
Figure B.5. Concentrations dans le décanteur (temps pluvieux)	169
Figure B.6. Concentrations de l'effluent (temps pluvieux)	170
Figure B.7. Concentrations dans le bassin (temps orageux)	171
Figure B.8. Concentrations dans le décanteur (temps orageux)	173
Figure B.9. Concentrations de l'effluent (temps orageux)	173
Figure C.1. Débit d'entrée	180
Figure C.2. Concentrations en S _I et S _S d'entrée	180
Figure C.3. Concentrations en X _I et X _S d'entrée	180
Figure C.4. Concentrations en S _{NH} et S _{ND} d'entrée	181
Figure C.5. Concentrations en X _{ND} et S _O d'entrée	181
Figure C.6. Données expérimentales sur l'effluent	182
Figure C.7. Résultats des concentrations de l'effluent après l'identification	185
Figure C.8. Concentration en DCO sur l'effluent après l'identification	185
Figure C.9. Concentration en DBO ₅ sur l'effluent après l'identification	186
Figure C.10. Concentration en NGL sur l'effluent après l'identification	186
Figure C.11. Concentration en MES sur l'effluent après l'identification	186

Table des tableaux

Tableau 1.1. Variables d'état du modèle de dégradation biologique	18
Tableau 1.2. Paramètres stœchiométriques	21
Tableau 1.3. Paramètres cinétiques	21
Tableau 1.4. Paramètres du modèle de décantation	24
Tableau 1.5. Concentrations dans l'effluent traité	28
Tableau 1.6. Concentrations dans le recyclage	28
Tableau 2.1. Comparaison des méthodes de calcul du gradient	46
Tableau 3.1. Paramètres du débit et des concentrations entrantes	57
Tableau 3.2. Paramètres identifiés	62
Tableau 3.3. Résultat d'aération pour le modèle réaliste après optimisation (heure)	65
Tableau 3.4. Résultat d'aération pour le modèle simplifié après optimisation (heure)	65
Tableau 3.5. Valeurs optimales de k _L a dans le cas d'un seul bassin (h ⁻¹)	75
Tableau 4.1. Valeurs du système	78
Tableau 4.2. Débits moyens	79
Tableau 4.3. Données moyennes d'entrée du système	80
Tableau 4.4. Valeurs des variables de fonctionnement de la station	81
Tableau 4.5. Valeurs d'aération après optimisation	86
Tableau 4.6. Paramètres pour le coût d'investissement	89
Tableau 4.7. Limites maximales pour les variables de l'opération (Alex et al., 2001)	90
Tableau 4.8. Coefficients des coûts de fonctionnement (Alasino et al., 2007)	90
Tableau 4.9. Résultat des coûts avant optimisation	91
Tableau 4.10. Estimation initiale des variables de décision	92
Tableau 4.11. Profils optimaux des variables de décision	92
Tableau 4.12. Répartition des coûts après optimisation	93
Tableau 4.13. Résumé des coûts avant et après optimisation	93
Tableau 4.14. Variables d'état au début	95
Tableau 4.15. Valeurs optimales des variables de décision	95
Tableau 4.16. Coûts du système après optimisation	95
Tableau 4.17. Résumé des coûts avant et après optimisation	96
Tableau 4.18. Profils optimaux des variables de décision	98
Tableau 4.19. Coûts du système après optimisation	99
Tableau 4.20. Résumé des coûts avant et après optimisation	99
Tableau 4.21. Coefficients des coûts (Alasino et al., 2007)	105

Table des tableaux

Tableau 4.22. Valeurs des <i>Bi</i>	105
Tableau 4.23. Variables optimales (cas d'un intervalle)	107
Tableau 4.24. Valeurs des variables de décision après optimisation	108
Tableau 4.25. Résultats après optimisation (cas de 1 bassin)	114
Tableau 4.26. Résultats après optimisation (cas de 2 bassins)	116
Tableau 4.27. Résultats après optimisation (cas de 3 bassins)	118
Tableau 4.28. Résultats après optimisation (cas de 4 bassins)	121
Tableau 4.29. Résultats après optimisation (cas de 5 bassins)	123
Tableau 4.30. Comparaison des coûts avant et après optimisation	124
Tableau 5.1. Dimensions moyennes de la station	130
Tableau 5.2. Concentrations initiales dans les bassins	132
Tableau 5.3. Algorithme utilisé pour l'analyse de l'estimabilité	136
Tableau 5.4. Paramètres et leurs limites dans le modèle (ASM1)	137
Tableau 5.5. Rangement des paramètres dans l'ordre décroissant d'estimabilité	138
Tableau 5.6. Résultats des paramètres identifiés	139
Tableau 5.7. Résultats des paramètres identifiés	141
Tableau 5.8. Concentrations initiales dans les bassins	142
Tableau 5.9. Comparaison des performances des stations de BSM1 et Verulam	148
Tableau A.1. Débit et charge incidents moyens sur 24 heures (4/09 - 10/09/1996)	162
Tableau A.2. Débit et charge incidents moyens sur 2 heures (journée du 10/09/1996)	162
Tableau B.1. Variables de fonctionnement (cas d'un intervalle)	174
Tableau B.2. Profils d'aération (cas de 7 intervalles)	174
Tableau B 3 Coefficients k ₁ a; dans les bassins (cas de 7 intervalles)	178

Nomenclature

\mathcal{A}_{α}	Apport d'oxygène		Iteration
AE^*	Paramètre de normalisation de l'AE	\mathcal{C}_i	Constantes qui mettent à la même échelle les différents objectifs
AE	Aération énergétique	CVI	Control Vector Iteration
AG	Algorithme Génétique	CVP	Control Vector
ASM1	Activated Sludge Model n°1		Parametrization
ASM2 ASM2D	Activated Sludge Model n°2 Activated Sludge Model	C_{EQ}	Coût de la qualité de l'effluent
	n°2D	C_{CO}	Coût de fonctionnement
ASM3	Activated Sludge Model n°3		Paramètre de normalisation
a^k	Durée d'aération au cours du $k^{\grave{e}me}$ cycle d'aération	$C_{_{EQ}}^{st}$	de l'EQ
a_k,b_k	Coefficients de fonction du débit entrée	C_{CO}^*	Paramètre de normalisation de l'CO
B_{DBO5}	Poids de la concentration en	DBO_5	Demande biochimique en oxygène
B_{DCO}	DBO ₅ dans EQ Poids de la concentration en	DCO	Demande chimique en oxygène
	DCO dans EQ	EQ	Effluent quality
B_{NO}	Poids de la concentration en NO dans EQ	$f^{(l)}$	Période de fonctionnement des turbines
B_{Nkj}	Poids de la concentration en	$f^{(2)}$	Périodes d'arrêt des turbines
- · · · y	Nkj dans EQ		Objectif d'optimisation
B_{SS}	Poids de la concentration en SS dans EQ	f_i	Solution optimale associée à
B	Coefficient d'aération	$f_i(x^*)$	la fonction objectif f_i
BSM1	Benchmark Simulation Model n°1	f_i^*	Paramètre de normalisation de l'objectif f_i
b_A	Taux de mortalité des bactéries autotrophes	f_{ns}	Fraction non décantable de composés particulaires en
b_H	Taux de mortalité des		suspension
	bactéries hétérotrophes	f_p	Fraction de DCO inerte
b_a, δ_a	Paramètres de l'aérateur	-	issue du décès de la biomasse
b_{ips}, δ_{ips}	Paramètres des pompes	H_2O	Eau
b_{set}, δ_{set}	Paramètres du décanteur	H	Hauteur du décanteur
b_{sr}, δ_{sr}	Paramètres de recyclage	CI	Coût d'investissement
b_t, δ_t	Paramètres du volume	$CI_{acute{e}rateur}$	Coût d'investissement de l'aérateur
BCI	Boundary Conditions		i aciatoni

$CI_{d\acute{e}canteur}$	Coût d'investissement du décanteur	K_X	Constante d'affinité en substrat particulaire pour
CI_i^T	Coût d'investissement		l'hydrolyse
CI_{pompe}	Coût d'investissement des	$k_L a$	Coefficient de transfert d'oxygène dissous
CI _{réacteur}	pompes entrées Coût d'investissement du	κ_h	Taux maximal spécifique d'hydrolyse
	réacteur	κ_a	Taux d'ammonification
$CI_{recyclage}$	Coût d'investissement du recyclage	ℓ^k	Durée du k ^{ème} cycle
CI_{total}	Coût total d'investissement		d'aération
	Town dintimat (town	MES	Matières en suspension
id	Taux d'intérêt (taux d'actualisation)	MIDO	Mixed Integer Dynamic Optimization
CO	Coût de fonctionnement	MINLP	Mixed Integer Non-Linear
CO _{aérateur}	Coût de fonctionnement du réacteur		Progamming
CO_{boue}	Coût de fonctionnement des	MVS	Matière Volatiles en Suspension
	boues	NGL	Azote total
CO_{pompe}	Coût de fonctionnement des pompes	NTK	Azote dit de Kjeldahl
CO	Total des coûts de	N_2	Azote gaz
CO_{total}	fonctionnement	NH_4^+	Azote ammoniacal
CT	Coût Total	170=	Nitrite
ICRS	Integrated Controlled Random Search	NO_2^-	Nitrate
IVP	Initial Value Problem	NO_3^-	Tittate
IDP	Itérative Dynamique	N_a	Indice de la couche d'alimentation
	Programming	N_c	Nombre de cycles
$J_{_S}$	Flux solide dans le décanteur	N_{cc}	Nombre de couches du
$K_{NH,A}$	Constante d'affinité en	¹ vcc	décanteur
$-N\Pi$, A	ammoniaque des	NLP	Non-Linear Programming
	autotrophes	O_2	Oxygène
$K_{NH,H}$	Constante d'affinité en	ODEs -	Ordinary Differential
	ammoniaque des hétérotrophes	ODES	Ordinary Differential Equations
K_{NO}	Constante d'affinité en nitrate des hétérotrophes	PAO	Polyphosphate Accumulating Organisms
	dénitrifiant	PE	Energie des pompes
ν	Constante d'affinité en	POM	Optimisation multicritère
$K_{O,A}$	oxygène des autotrophes		Optimisation monocritère
$K_{O,H}$	Constante d'affinité en	POM_{ω}	_
•	oxygène des hétérotrophe	PIC	Proportional Integral Derivative
K_S	Constante d'affinité en	_dec	Fraction des différents
	substrat des hétérotrophes	p_s^{dec}	composés solubles par

	rapport aux composés	S_O	Oxygène dissous
p_x^{dec}	solubles totaux S_t Fraction des différents	S_O^{sat}	Concentration en oxygène dissous à saturation
1 A	composés particulaires par rapport aux composés	S_S	Substrat facilement biodégradable
Q_o	particulaires totaux X_t Débit entrée du réacteur	S_t^{dec}	Concentration soluble totale dans le décanteur
Q_a	Débit de recyclage interne	S_{ij}	Matrice des coefficients de
Q_e	Débit effluent	,	sensibilité de paramètres Successive Quadratic
Q_f	Débit entrée dans le décanteur	SQP	Programming Programming
Q_{in}	Débit entrant au décanteur	T	Temps de calcul
\mathcal{L}_{in}	primaire	t_0	Temps au début
Q_k	Débit du k ^{ème} bassin	t_b	Temps d'arrêt de l'aération
Q_r	Débit de recyclage externe	t_{c}	Temps du début de l'aération
Qrec	Débit de recyclage Débit d'extraction du	t_f	Temps à la fin
Q_{s1}	décanteur primaire Débit d'extraction du	t_{min}^{OFF}	Durée d'arrêt minimale de l'aérateur
Q_{s2} Q_u	décanteur secondaire Débit sous le décanteur	t_{min}^{ON}	Durée de fonctionnement minimale de l'aérateur
Q_w	Débit d'extraction de boues	TPBVP	Two Point Boundary Value Problem
RPA	Réacteur Parfaitement Agité	v_s	Vitesse de sédimentation
r_h	Paramètre de sédimentation	V	Volume
	pour les suspensions fortement concentrées	V^r	Volume réactionnel
r_i	Taux de conversion	v_{dn}	Vitesse du flux descendant
r_p	Paramètre de sédimentation pour les suspensions	v_{up}	Vitesse du flux ascendant
	faiblement concentrées	ν_0	Vitesse maximale théorique de sédimentation
\mathcal{R}_i	Taux de conversion de chaque composé	$v_0^{'}$	Vitesse maximale effective de sédimentation
S_{ALK}	Alcalinité Matière organique soluble	VEGA	Vector Evaluated Genetic Algorithm
S_I	inerte	$X_{B,A}$	Biomasse active autotrophe
S_{ND}	Azote organique soluble biodégradable	$X_{B,H}$	Biomasse active hétérotrophe
S_{NH}	Azote sous forme d'ammoniaque	X_I	Matière organique particulaire inerte
S_{NO}	Azote sous forme de nitrate et de nitrite	X_{ND}	Azote organique particulaire biodégradable

X_P	Productions particulaires	Z_w	Concentration d'extraction
	viennent de biomasse décomposée	z_a	Profondeur de l'alimentation du décanteur
X_S	Substrat lentement biodégradable	z	Épaisseur d'une couche de décanteur
X_f	Concentration MES entrant au décanteur	WWTPs	WasteWater Treatment Plants
X_m	Concentrations particulaires dans le décanteur	$lpha_E$	Coefficient de coût de fonctionnement
X_{min}	Concentration en MES minimale	$lpha_{EQ}$	Coefficient du coût de la qualité de l'effluent
X_t	Concentration des solides en suspension	$lpha_{SLD}$	Paramètre du coût de traitement des boues
X_t^{dec}	Concentration particulaire dans le décanteur	η_h	Facteur de correction pour
X_t^{max}	Concentration limite des solides en suspension	μ_A	l'hydrolyse en phase anoxie Taux de croissance
x^{ba}	Concentrations dans le bassin		spécifique maximal des autotrophes
x^{dec}	Concentrations dans le décanteur	μ_H	Taux de croissance spécifique maximal des hétérotrophes
x^{rec}	Concentrations du l'effluent	$ ho_i$	Cinétique du modèle de dégradation
x^{rej}	Concentrations de l'effluent Rendement de conversion	ω_i	Poids de l'objectif
Y_A	des autotrophes	Ф	Flux particulaire total
Y_H	Rendement de conversion des hétérotrophes	Γ	Coefficient pour la valeur actuelle
Z_a	Concentration de recyclage interne	\mathcal{G}	Taux de compression des boues dans le décanteur
Z_f	Concentration entrant au décanteur	Φ_s	Flux particulaire de sédimentation
Z_i	Concentrations dans le bassin	Φ_t	Flux particulaire associé au flux de liquide
Z_m	Concentrations solubles dans le décanteur		-
Z_r	Concentration du recyclage		

OPTIMISATION DE LA CONCEPTION ET DU FONCTIONNEMENT DES STATIONS DE TRAITEMENT DES EAUX USÉES

Mots clés : traitement des eaux usées, boues activées, modélisation et simulation, optimisation dynamique, conception et fonctionnement optimaux.

Ce travail de thèse constitue le prolongement direct des travaux de thèse Chachuat (2001) sur l'optimisation dynamique et la commande optimale des stations de traitement de petite taille. L'objectif est d'aller plus loin en s'intéressant aux dimensionnement et fonctionnement optimaux des stations de traitement des eaux usées de toute taille. Ainsi, dans une première étape, l'optimisation des stations de traitement de petite taille a été abordée. Contrairement à ce qui a été fait jusqu'à maintenant : (i) l'aération n'est plus alternée, mais continue, (ii) le décanteur n'est plus considéré comme parfait, mais son fonctionnement est modélisé à l'aide d'une série de 10 couches de décantation, (iii) la méthode d'optimisation développée est fondée sur la méthode des sensibilités implémentée au sein du logiciel de simulation et optimisation dynamiques gProms, utilisé dans toute la thèse. L'influence du modèle du décanteur sur la minimisation de l'énergie d'aération a été particulièrement analysée. Dans une deuxième étape, les stations de traitement de grande taille sont considérées. Plus spécifiquement, le modèle benchmark développé par le réseau européen COST a été utilisé pour décrire leur fonctionnement. Un « foreignobject » a été développé pour que la simulation et l'optimisation du fonctionnement de ces stations soient possibles sous gProms. L'optimisation a notamment montré que la consommation d'énergie d'aération pouvait être réduite d'au moins de 30% par rapport au fonctionnement actuel de ces stations. Dans une troisième étape, l'optimisation du dimensionnement des stations de traitement de grande taille a été étudiée. Une superstructure a ainsi été définie avec plusieurs (cinq) réacteurs et un décanteur. Toutes les possibilités de recyclage et de court-circuit entre les réacteurs d'une part et entre les réacteurs et le décanteur d'autre part sont prises en compte. L'objectif était de déterminer la meilleure structure et les valeurs optimales des volumes des réacteurs qui permettent de minimiser le coût total tout en respectant les contraintes réglementaires sur les rejets. Par ailleurs, une optimisation multicritère de la station optimale résultante a été réalisée. Elle a permis de déterminer l'ensemble de Pareto des solutions qui minimisent la consommation énergétique (d'aération et de pompage) et maximisent la qualité de l'effluent. La quatrième et dernière partie de ce travail s'intéresse à la modélisation, simulation et optimisation de la station de traitement de Verulam près de Durban en Afrique du Sud. Des mesures expérimentales ont été réalisées sur cette station et le modèle ASM1 a été utilisé pour décrire son fonctionnement. Une analyse d'estimabilité des paramètres a été d'abord réalisée pour déterminer les paramètres du modèle qui peuvent être estimés à partir des mesures expérimentales disponibles. Les paramètres estimables ont ensuite été identifiés à l'aide de gProms. Le modèle ainsi identifié a été validé et ensuite utilisé pour optimiser le fonctionnement énergétique de cette station.

OPTIMIZATION OF THE DESIGN AND OPERATION OF WASTEWATER TREATMENT PLANTS

Keywords: wastewater treatment, activated sludge, modeling and simulation, dynamic optimization, optimal design and operation.

This work is a direct extension of the PhD thesis of Chachuat (2001) on dynamic optimization and optimal control of small size wastewater treatment plants. The objective is to go further by focusing on optimal design and operation of wastewater treatment plants of any size. Thus, in a first part, optimization of small size wastewater treatment plants was studied. Contrary to what has been done so far: (i) the aeration is no longer alternating, but continuous, (ii) the settler is not considered perfect, but its operation is modeled using a series of 10 sedimentation layers, (iii) the optimization approach developed is based on the method of sensitivities implemented wthin the dynamic simulation and optimization software gProms, used throughout this work. The influence of the settler model on the minimization of aeration energy was particularly investigated. In a second part, the large size treatment plants are considered. More specifically, the benchmark model developed by the European network COST was used to describe their operation. A "foreign object" was developed in order to make the simulation and optimization of these plants possible using gProms. The optimisation showed that the aeration energy consumption could be reduced by at least 30 % compared to the current operation of these plants. In a third part, the optimization of the design of the wastewater treatment plant was studied. A superstructure has been defined with several (five) reactors and a settler. All the possibilities of recycling and by-passes between the reactors on the one hand and between the reactors and the settler on the other are considered. The objective was to determine the best structure and the optimal values of the reacter volumes that minimize the net present value while respecting the regulatory constraints. On the other hand, a multi-objective optimization problems of the treatment plant was carried out. It allawed to determine the Pareto set of solutions that minimize the energy consumption (pumping and aeration) and maximize the effluent quality. The fourth and last part of this work focuses on modeling, simulation and optimization of the treatment plant of the city of Verulam in the area of Durban in South Africa. Experimental measurements were carried out on the plant and the ASM1 model was used to describe its operation. An estimability analysis was first performed in order to determine the model parameters that can be estimated from the available experimental measurements. The estimable parameters were then identified using gProms. The identified model was validated and then used to optimize the energy function of this plant.