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Abstract

Scene recognition is an important problem in many application areas of image
and video processing. Scene recognition has a wide range of applications, such as
object recognition and detection, content-based image indexing and retrieval and
intelligent vehicle and robot navigation. However, the natural scene images tend
to be very complex and difficult to analyze due to changes of illumination and
transformation. In this thesis, we will investigate into building a novel model to

learn and recognize scenes in nature.

This study proposes a new approach that combines locality-constrained sparse
coding (LCSP), Spatial Pyramid Pooling and linear SVM in end-to-end model.
Firstly, interesting points of each image in the training set are extracted by a local
descriptor as dense SIF'T which represents local spatial information. These features
known as codewords and each codeword is represented as part of a topic. Then
we employs LCSP algorithm to learn the codeword distribution of those local fea-
tures from the training dataset. Next, a modified Spatial Pyramid Pooling model
is employed for encoding the spatial distribution of local features. Spatial Pyramid
Pooling model has been remarkably successful in terms of both scene and object
recognition. In the testing stage, a linear SVM will be used to classify local features
which are encoded by Spatial Pyramid Pooling. The new system achieves very com-

petitive results and leads to state-of-the-art performance on several benchmarks.
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